[過去ログ] 分からない問題はここに書いてね458 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
880(2): 132人目の素数さん [sage] 2020/03/23(月) 11:47:06.63 ID:Q1ISEmaR(1/2) AAS
>>828
nが偶数の場合
P[win] = (n+2)/2 * 2!n!/ (n+2)! = 1/(n+1) {n+2個をシャッフルして偶境界に白白}
E[n; win] = ( 1 + 2 + ... + (n+2)/2 ) * 2!n!/ (n+2)! = ...
E[n; lose] = (1*2n + 2*2(n-2) + .... + n/2*2*2 ) * 2!n!/ (n+2)! {n+2個をシャッフルして偶境界に黒白or白黒、その後方に白}
= ...
nが奇数の場合も同様
(便利な公式)
1*N + 2*(N-1) + ... +(N-1)*2 + N*1
1*(N+1-1) + 2*(N+1-2) + ... +(N-1)*(N+1-(N-1)) + N*(N+1-N)
= (1+2+...+N)(N+1) - (1^2 + 2^2 + ... + N^2)
= N(N+1)(N+1)/2 - N(N+1)(2N+1)/6 = N(N+1)(N+2)/6
885: 132人目の素数さん [] 2020/03/23(月) 15:29:26.68 ID:mjeu1Sts(3/3) AAS
>>884
復元なら簡単すぎでしょうから>>880は非復元で解いてる
887(1): 132人目の素数さん [sage] 2020/03/23(月) 19:49:00.11 ID:d4Un7xXa(1) AAS
>>880
どうでもいいことだが、
1*N + 2*(N-1) + ... +(N-1)*2 + N*1 = N(N+1)(N+2)/6
の別証明。
右辺は C(n+2,3) であるが、これを次のように考える。
1,2,3,4,…,n+2 のn+2個の数から3つ選ぶ選び方については
選んだ3つの数を左、真ん中、右と呼ぶことにすると、
真ん中に選ぶ数で場合分けできる。
真ん中が2となる選び方は、左1通り*右n通り。
真ん中が3となる選び方は、左2通り*右(n-1)通り。
真ん中が4となる選び方は、左3通り*右(n-2)通り。
…
真ん中がn+1となる選び方は、左n通り*右1通り。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.038s