[過去ログ] 分からない問題はここに書いてね458 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
715(1): 132人目の素数さん [sage] 2020/03/18(水) 16:16:48.31 ID:cnODbM85(1) AAS
1/(1-x+x^2)と1/(1-x-2x^2)をxのべき級数に展開し、x^nの係数をそれぞれp[n],q[n]とおく。
(1)任意のnに対してp[3n]はnによらない定数であることを示し、その値を求めよ。
(2)3q[n]-p[3n]をnで表せ。
718(3): 132人目の素数さん [] 2020/03/18(水) 20:24:26.05 ID:lfw++vLD(1) AAS
>>715-716
たぶん式はあってるけど、「nによらない定数」って日本語が間違ってる。
1つめの有理式は、分母を複素数の範囲で(x-a)(x-b)と因数分解すると
aやbは1の6乗根となる。
そして1/(x-a)と1/(x-b)のべき級数展開を考え、2つのべき級数展開の積
であることからx^3、x^6、x^9の係数を求めてみる。
2つめの有理式の3倍を部分分数分解する。
2つの有理式のべき級数展開を考え、2つのべき級数展開の和から3q[n]を出す。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.039s