[過去ログ] 分からない問題はここに書いてね458 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
554
(1): イナ ◆/7jUdUKiSM [sage] 2020/03/09(月) 05:46:29.16 ID:otlyxJ1y(3/6) AAS
>>553
>>515
(2)後半
方程式C,Dよりyを消去した4次方程式x^4-2bx^2-x+b^2+c=0の解と係数の関係より、
2p+q-c=0──?
p^2+2pq-2pc-qc=-2b──?
-(p^2q-2pqc-p^2c)=-1──?
-p^2qc=b^2+c──?
?よりp^2+q(2p-c)-2pc+2b=0
?より2p-c=-q
代入しp^2-q^2-2pc+2b=0
p^2-q^2=2pc-2b
p-q=p-(c-2p)=3p-c
q-c=c-2p-c=-2p
q^2-b=q^2-p^2+p^2-b=2b-2pc+p^2-b=b-2pc+p^2
これらを代入し、
E=(2/3)(-2p)(c^2-4pc+4p^2-b)+(-2p)(b-p^2)+(1/3)(3p-c)(2b-2pc)-(1/3)(p-c)(b-p^2)
=(-4p/3)(c^2-4pc+4p^2-b)-2pb+2p^3+2p(b-pc)-(2c/3)(b-pc)-pb/3+bc/3+p^3/3-cp^2/3
=-4pc^2/3+16p^2c/3-16p^3/3+4pb/3-2pb+2p^3+2pb-2p^2c-2bc/3+2pc^2/3-pb/3+bc/3+p^3/3-cp^2/3
=-4pc^2/3+16p^2c/3-10p^3/3+pb-2p^2c-2bc/3+2pc^2/3+bc/3+p^3/3-p^2c/3
=-2pc^2/3+3p^2c-3p^3+pb-bc/3
?・c+?より、
-2pqc^2-p^2c^2=b^2+c+1
-2p(c-2p)c^2-p^2c^2=b^2+c+1
-2pc+4p^2c^2-p^2c^2=b^2+c+1
3p^2c^2-2pc-b^2-c-1=0
重解を持つから、
c^2+3(b^2+c+1)=0
p=c±√{c^2+3(b^2+c+1)}/3c^2
=1/3c
∴E=-2pc^2/3+3p^2c-3p^3+pb-bc/3
=-2(1/3c)c^2/3+3(1/3c)^2c-3(1/3c)^3+(1/3c)b-bc/3
=-2c^3/9+1/3c-1/9c^3+b/3c-bc/3
F=-c^3-7(1/3c)^3/3+4(1/3c)^2c/3+4(1/3c)b/3-8(1/3c)c/3+4(1/3c)b^2/3
=-c^3+4/27c+4b^2/9c+4b/9c-8/9-7/81c^3
555
(1): イナ ◆/7jUdUKiSM [sage] 2020/03/09(月) 06:00:10.45 ID:otlyxJ1y(4/6) AAS
>>553-554括弧訂正。
p=[c±√{c^2+3(b^2+c+1)}]/3c^2
=1/3c
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.051s