[過去ログ] 分からない問題はここに書いてね458 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
515(10): 132人目の素数さん [sage] 2020/03/07(土) 14:22:34.77 ID:M1hoXjIU(1) AAS
この問題をお願いします。簡単そうなのですが点Pの座標が出せないで困っています。
b,cは実数の定数とする。2つの放物線
C:y=x^2
D:x=(y-b)^2+c
が相異なる3点P,Q,Rで交わっており、CとDは点Pで接している。
点Pのy座標が他の2点のy座標よりも小さく、点Qのx座標が点Rのx座標より小さいとき、以下の問いに答えよ。
(1)点Pのx座標は点Qのx座標より大きく、かつ、点Rのx座標より小さいことを示せ。
(2)領域EとFを以下のように定める。
E:「放物線Cの弧QPと、放物線Dの弧QPとで囲まれる部分」
F:「放物線Cの弧QRと、放物線Dの弧QRとで囲まれる部分」
このとき、E,Fの面積をそれぞれbまたはcで表せ。
(3)(2)で求めたE,Fの面積について、その大小を比較せよ。
517: 132人目の素数さん [] 2020/03/07(土) 14:52:46.83 ID:JUAM4CMV(6/6) AAS
>>515
>(1)点Pのx座標は点Qのx座標より大きく、かつ、点Rのx座標より小さいことを示せ。
図から自明
>(2)領域EとFを以下のように定める。
>E:「放物線Cの弧QPと、放物線Dの弧QPとで囲まれる部分」
>F:「放物線Cの弧QRと、放物線Dの弧QRとで囲まれる部分」
>このとき、E,Fの面積をそれぞれbまたはcで表せ。
面倒くさい
>(3)(2)で求めたE,Fの面積について、その大小を比較せよ。
放物線は拡大縮小で1つしかないから
移動させていけばEFが逆転するところが1カ所だけあるのは自明だが
面倒くさい
527(2): イナ ◆/7jUdUKiSM [sage] 2020/03/08(日) 00:55:22.31 ID:U4I0sQHI(1/4) AAS
前>>387
>>515
(1)図を描くと、
P,Qが第2象限、Rが第1象限にあることがわかる。
放物線C:y=x^2
の頂点は(0,0),軸はy軸。
放物線D:x=(y-b)^2+c
の頂点は(b,c),軸はx=b。
これら2つの放物線はともに二次式でかつ二次の係数が1だから、同じ曲率でたがいに相似な放物線で、Cを時計回りに90°回転して(c,b)移動させるとDになる。
題意より点Pのy座標が他の2点のy座標よりも小さく、点Qのx座標が点Rのx座標より小さいから、
点Pのx座標は点Qのx座標より大きく、かつ、点Rのx座標より小さい位置にある。(2)x軸とy軸に平行な4つの直線で囲まれた長方形を放物線が1:2に分けるように作図すると、
Q(-q,q^2)(q<0)として、
Eの面積=SE(b,c)
=q^3/3-(q+c)b+(1/3)(-q-c)(q^2-b)+(1/3)bc
=q^3/3-bq-bc-q^3/3-cq^2/3+bq/3+bc/3+bc/3
=-2bq/3-bc/3-cq^2/3
Fの面積=SF(b,c)
=(c^2-b)(-2c)(4/3)-(1/3)(c^2-q^2)(-c+q)-{(-2c^3/3-4q^3/3-2c(c^2-q^2)}
まだFもう少し誤差ある。
(3)SE(b,c)<SF(b,c)
546(1): イナ ◆/7jUdUKiSM [sage] 2020/03/08(日) 19:22:25.30 ID:U4I0sQHI(4/4) AAS
前>>534
>>515積分したら負け。
P(p,p^2),Q(q,q^2),R(-c,c^2)に変更する。
領域にA,B,C,G,H,I,J……とアルファベットを振り、長方形の面積、およびその1/3,2/3の面積を足し引きする。
551(1): イナ ◆/7jUdUKiSM [sage] 2020/03/09(月) 02:11:47.07 ID:otlyxJ1y(1/6) AAS
前>>546
>>515(2)長方形も放物線も(1or2)/3×縦x軸×横y軸で立式すると、
E=(2/3)(q-c)(q^2-b)+(q-c)(b-p^2)+(1/3)(p-q)(q^2-p^2)-(1/3)(p-c)(b-p^2)
F=(2/3)(-2c)c^2-(1/3)(-2c)(c^2-b)+(1/3)(p-c)(c^2-p^2)-E-(1/3)(p-c)(b-p^2)
Fは引きすぎてから足して足しすぎたぶんを引く感じ。Eを引いてるからEを代入し、
F=(2/3)(-2c)c^2-(1/3)(-2c)(c^2-b)+(1/3)(p-c)(c^2-p^2)-{(2/3)(q-c)(q^2-b)+(q-c)(b-p^2)+(1/3)(p-q)(q^2-p^2)-(1/3)(p-c)(b-p^2)}-(1/3)(p-c)(b-p^2)
=-4c^3/3+2c^3/3-2bc/3+p(c^2-p^2)/3-c(c^2-p^2)/3-(2/3)(q-c)(q^2-b)-(q-c)(b-p^2)-(1/3)(p-q)(q^2-p^2)+(1/3)(p-c)(b-p^2)-(1/3)(p-c)(b-p^2)
方程式C,Dよりyを消去した4次方程式x^4-2bx^2-x+b^2+c=0の解と係数の関係より、
q=c-2p
p^2+2pq-2pc-qc=-2b
p^2q-2pqc-p^2c=1
-p^2qc=b^2+c
2式目を変形し、
p^2+q(2p-c)-2pc+2b=0
p^2-q^2-2pc+2b=0
p^2-q^2=2pc-2b
p-q=p-(c-2p)=3p-c
q-c=c-2p-c=-2p
q^2-b=(c-2p)^2-b=c^2-4pc+4p^2-b
これらを代入し、
E=(2/3)(-2p)(c^2-4pc+4p^2-b)+(-2p)(b-p^2)+(1/3)(3p-c)(2b-2pc)-(1/3)(p-c)(b-p^2)
=(-4p/3)(c^2-4pc+4p^2-b)-2pb+2p^3+2p(b-pc)-(2c/3)(b-pc)-pb/3+bc/3+p^3/3-cp^2/3
=-4pc^2/3+16p^2c/3-16p^3/3+4pb/3-2pb+2p^3+2pb-2p^2c-2bc/3+2pc^2/3-pb/3+bc/3+p^3/3-cp^2/3
=-4pc^2/3+16p^2c/3-16p^3/3+4pb/3-2pb+2p^3+2pb-2p^2c-2bc/3+2pc^2/3-pb/3+bc/3+p^3/3-cp^2/3
(EもFも計算途中ですみません)
553(2): イナ ◆/7jUdUKiSM [sage] 2020/03/09(月) 05:44:47.89 ID:otlyxJ1y(2/6) AAS
前>>551
>>515(2)前半
x軸とy軸に平行な4つの直線で囲まれた長方形を1:2に分ける放物線を作図し、
P(p,p^2)(p<0),Q(q,q^2)(q<0)として、
長方形も放物線も(1or2or3)/3×縦(x軸方向)×横(y軸方向)で立式すると、
E=(2/3)(q-c)(q^2-b)+(q-c)(b-p^2)+(1/3)(p-q)(q^2-p^2)-(1/3)(p-c)(b-p^2)
F=(2/3)(-2c)c^2-(1/3)(-2c)(c^2-b)+(1/3)(p-c)(c^2-p^2)-E-(1/3)(p-c)(b-p^2)
Fは引きすぎてから足して足しすぎたぶんを引く感じ。Eを引いてるからEを代入し、
F=(2/3)(-2c)c^2-(1/3)(-2c)(c^2-b)+(1/3)(p-c)(c^2-p^2)
-{(2/3)(q-c)(q^2-b)+(q-c)(b-p^2)+(1/3)(p-q)(q^2-p^2)-(1/3)(p-c)(b-p^2)}
-(1/3)(p-c)(b-p^2)
=-4c^3/3+2c^3/3-2bc/3+p(c^2-p^2)/3-c(c^2-p^2)/3
-(2/3)(q-c)(q^2-b)-(q-c)(b-p^2)-(1/3)(p-q)(q^2-p^2)+(1/3)(p-c)(b-p^2)
-(1/3)(p-c)(b-p^2)
=-4c^3/3+2c^3/3-2bc/3+p(c^2-p^2)/3-c(c^2-p^2)/3-(2/3)(-2p)(q^2-b)-(-2p)(b-p^2)-(1/3)(3p-c)(2b-pc)
=-4c^3/3+2c^3/3-2bc/3+p(c^2-p^2)/3-c(c^2-p^2)/3+(4p/3)(b-2pc+b^2)+2p(b-p^2)-(p-c/3)(2b-pc)
=-4c^3/3+2c^3/3-2bc/3+c^2p/3-p^3/3-c^3/3+p^2c/3+4pb/3-8pc/3+4pb^2/3+2pb-2p^3-2pb+p^2c+2bc/3-pc^2/3
=-4c^3/3+c^3/3-7p^3/3+4p^2c/3+4pb/3-8pc/3+4pb^2/3
=-c^3-7p^3/3+4p^2c/3+4pb/3-8pc/3+4pb^2/3
(2)後半につづく。
554(1): イナ ◆/7jUdUKiSM [sage] 2020/03/09(月) 05:46:29.16 ID:otlyxJ1y(3/6) AAS
前>>553
>>515
(2)後半
方程式C,Dよりyを消去した4次方程式x^4-2bx^2-x+b^2+c=0の解と係数の関係より、
2p+q-c=0──?
p^2+2pq-2pc-qc=-2b──?
-(p^2q-2pqc-p^2c)=-1──?
-p^2qc=b^2+c──?
?よりp^2+q(2p-c)-2pc+2b=0
?より2p-c=-q
代入しp^2-q^2-2pc+2b=0
p^2-q^2=2pc-2b
p-q=p-(c-2p)=3p-c
q-c=c-2p-c=-2p
q^2-b=q^2-p^2+p^2-b=2b-2pc+p^2-b=b-2pc+p^2
これらを代入し、
E=(2/3)(-2p)(c^2-4pc+4p^2-b)+(-2p)(b-p^2)+(1/3)(3p-c)(2b-2pc)-(1/3)(p-c)(b-p^2)
=(-4p/3)(c^2-4pc+4p^2-b)-2pb+2p^3+2p(b-pc)-(2c/3)(b-pc)-pb/3+bc/3+p^3/3-cp^2/3
=-4pc^2/3+16p^2c/3-16p^3/3+4pb/3-2pb+2p^3+2pb-2p^2c-2bc/3+2pc^2/3-pb/3+bc/3+p^3/3-cp^2/3
=-4pc^2/3+16p^2c/3-10p^3/3+pb-2p^2c-2bc/3+2pc^2/3+bc/3+p^3/3-p^2c/3
=-2pc^2/3+3p^2c-3p^3+pb-bc/3
?・c+?より、
-2pqc^2-p^2c^2=b^2+c+1
-2p(c-2p)c^2-p^2c^2=b^2+c+1
-2pc+4p^2c^2-p^2c^2=b^2+c+1
3p^2c^2-2pc-b^2-c-1=0
重解を持つから、
c^2+3(b^2+c+1)=0
p=c±√{c^2+3(b^2+c+1)}/3c^2
=1/3c
∴E=-2pc^2/3+3p^2c-3p^3+pb-bc/3
=-2(1/3c)c^2/3+3(1/3c)^2c-3(1/3c)^3+(1/3c)b-bc/3
=-2c^3/9+1/3c-1/9c^3+b/3c-bc/3
F=-c^3-7(1/3c)^3/3+4(1/3c)^2c/3+4(1/3c)b/3-8(1/3c)c/3+4(1/3c)b^2/3
=-c^3+4/27c+4b^2/9c+4b/9c-8/9-7/81c^3
556: 132人目の素数さん [sage] 2020/03/09(月) 07:14:59.44 ID:V6IMEB5h(2/2) AAS
>>515
Dの頂点(c,b)のbを固定したままcを(水平に)動かす。
CとDが点P(x.y)で接する条件は
(xx-b)^2 -x +c = 0,
4x(xx-b) -1 = 0,
b<3/4 のときは 下の式を解いて
x(P) = (1/2){[1-√(1-B^3)]^(1/3) + [1+√(1-B^3)]^(1/3)},
y(P) = x(P)^2
= (1/4){[1-√(1-B^3)]^(2/3) + [1+√(1-B^3)]^(2/3) +2B},
ただし B =4b/3.
b<3/4 のとき (B<1) 1ヵ所で接する。
b=3/4 のとき (B=1) 2ヵ所で接する。
c = -3/4 P(x,y) = (-1/2,1/4) (変曲点?)
c = 15/16 P(x,y) = (1,1)
b>3/4 のとき (B>1) 3ヵ所で接する。
558(1): イナ ◆/7jUdUKiSM [sage] 2020/03/09(月) 15:29:12.96 ID:otlyxJ1y(5/6) AAS
前>>555当初の目的忘れてた。質問に答える。
>>515
p=1/3cだから、
点P(p,p^2)=(1/3c,1/9c^2)
559(1): イナ ◆/7jUdUKiSM [sage] 2020/03/09(月) 16:20:27.82 ID:otlyxJ1y(6/6) AAS
前>>558
>>515
点Pの座標は、
P(1/3c,1/9c^2)
(1)
点Pのx座標はp=1/3c
点Qのx座標はq=c-2p
p-q=3p-c=1/c-c>0
∵方程式Cが方程式Dに点Pで内接するにはc<-1だから。
∴点Qのx座標は点Pのx座標より小さい。
点Rのx座標は-c>1/3c
∴点Rのx座標は点Pのx座標より大きい。
568(1): イナ ◆/7jUdUKiSM [sage] 2020/03/10(火) 10:10:34.04 ID:SgyDBxw5(3/4) AAS
前>>565
>>515点P(1/3c,1/9c^2)
点Q(c-2/3c,c^2-4/3+4/9c^2)
点R(-c,c^2)
E=-10b/9c+20/27c-4/27c^3+c^3/3-2c/3-b^3/3-α
F=-4c^3/3-bc/3+7c/9+b/c-20/27c+4/27c^3+b^3/3+αα=bc/3-(-c^3)/3+(-2c)(2c^2-2b)/6-(2c^2/3-F)+E
F+αでEが出る。
E-αでFが出る。
(2)
F+α=-4c^3/3-bc/3+7c/9+b/c-20/27c+4/27c^3+b^3/3+α+bc/3-(-c^3)/3+(-2c)(2c^2-2b)/6-(2c^2/3-F)+E
E=4c^3/3+bc/3-7c/9-b/c+20/27c-4/27c^3-b^3/3-bc/3-c^3/3+2c^3/3-2bc/3+2c^2/3
∴E=5c^3/3+2c^2/3-7c/9-b/c+20/27c-4/27c^3-b^3/3-2bc/3
E-α=-10b/9c+20/27c-4/27c^3+c^3/3-2c/3-b^3/3-α-{bc/3-(-c^3)/3+(-2c)(2c^2-2b)/6-(2c^2/3-F)+E}
F=10b/9c-20/27c+4/27c^3-c^3/3+2c/3-b^3/3+{bc/3-(-c^3)/3+(-2c)(2c^2-2b)/6-(2c^2/3)}
=10b/9c-20/27c+4/27c^3-c^3/3+2c/3-b^3/3+bc/3+c^3/3-2c^3/3+2bc/3-2c^2/3
∴F=-2c^3/3-2c^2/3+2c/3+10b/9c-20/27c+4/27c^3-b^3/3+bc
(3)F-E=-2c^3/3-2c^2/3+2c/3+10b/9c-20/27c+4/27c^3-b^3/3+bc-(5c^3/3+2c^2/3-7c/9-b/c+20/27c-4/27c^3-b^3/3-2bc/3)
=-7c^3/3-4c^2/3+13c/9+19b/9c-40/27c+8/27c^3+5bc/3
c<0だが、式でE<Fを示すのは難しい。よって図で説明する。
放物線Dは放物線Cと同じ曲率で、回転させて頂点を合わせればy=x^2のグラフと一致させることができ、
FにEを重ねると、
EはR(-c,c^2)から(0,b)に引いた半直線と放物線Cで囲まれた領域Gの中でぴったり放物線Cに沿うように収まるが、この領域GはFの中でぴったり放物線Cに沿うように収まる。
∴E<G<F
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.042s