[過去ログ] 分からない問題はここに書いてね458 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
503
(2): 132人目の素数さん [sage] 2020/03/07(土) 10:33:24.26 ID:bfEFgg5v(1) AAS
>>454
1≦t<u<v, t+u+v=n,
を満たす (t,u,v) が q(n) とおりある、とする。

t>1 の場合は
 (t-1,u-1,v-1) は 1≦ t-1 < u-1 < v-1 を満たし、和が n-3 となる。
 q(n-3) に等しい。

t=1 の場合は
 (u-1,v-1) は 1≦ u-1 < v-1 を満たし、和が n-3 となる。
 [(n-4)/2] = [n/2] -2 とおりある。

これらをたすと漸化式
 q(n) = q(n-3) + [n/2] - 2,
初期値 q(6) = 1,
n が3の倍数のときは
 q(n) = (nn/12) - (n/2) + 1 - (1/4)mod(n,2),
一般には
 q(n) = (nn/12) - (n/2) + 1 - (1/4)mod(n,2) - (1/3)d(n),
ここに
 mod(n,2) = n - 2[n/2],
 d(n) = 0 (nが3の倍数),  = 1 (その他)
514: 132人目の素数さん [] 2020/03/07(土) 13:59:17.22 ID:J4LoV2eb(3/3) AAS
>>503
回答ありがとうございます。
今、理解に努めています。
531: 132人目の素数さん [sage] 2020/03/08(日) 08:38:23.03 ID:xYlNxYaj(1/3) AAS
>>503
U := {(t,u,v) | t+u+v=n, 1≦t,u,v}
#U = C[n-1,2] = (n-1)(n-2)/2,

#{(t,u,v) | t+u+v=n, 1≦t=u<v} = [(n-1)/3],
#{(t,u,v) | t+u+v=n, 1≦t<u=v} = [(n-1)/2] - [n/3],
#{(t,u,v) | t+u+v=n, 1≦t=u=v} = [n/3] - [(n-1)/3] = 1 - d(n),
辺々たすと
#A = #B = #C = [(n-1)/2],
また A∩B = B∩C = C∩A = A∩B∩C,
 #(A∩B∩C) = 1 - d(n),  (3|n のとき1, それ以外は0)

#(AUBUC)
 = #A + #B + #C - #(A∩B) - #(B∩C) - #(C∩A) + #(A∩B∩C)
 = 3[(n-1)/2] - 2{1-d(n)}
 = 3n/2 -5 + (3/2)mod(n,2) + 2d(n),     ・・・・ (*)

q(n) = (#U - #(AUBUC))/6
 = (nn/2 -3n +6 - (3/2)mod(n,2) - 2d(n))/6
 = (nn/12) - (n/2) + 1 - (1/4)mod(n,2) - (1/3)d(n),

*) [(n-1)/2] = (n + mod(n,2))/2 -1,
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.040s