[過去ログ] 分からない問題はここに書いてね458 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
242
(3): 132人目の素数さん [sage] 2020/02/23(日) 09:56:07.33 ID:sm1T7+nt(1/3) AAS
ある複素関数を f(z) = Σ[k=0,∞] (z^k / k!) と無限級数で定義します。
つまり指数関数ですが、まだその周期性を知らず、πや三角関数(sin, cos)も知らないものとします。
無限級数の収束性等は既知とします。

f(z) は ある純虚数の周期を持つ関数である事を示してください。

出典は特にありません、答えも分かりません。
244
(1): 132人目の素数さん [sage] 2020/02/23(日) 13:09:01.77 ID:l2/N4aPd(1) AAS
>>242
まず定義式から
exp(x+y) = exp(x) exp(y)
exp(r+iθ) = exp(r)(cosθ + i sinθ):cosθ, sinθは単に級数で定義された関数
を証明する
共役複素数を掛けて
exp(2r) = exp((r+iθ)+(r-iθ)) = exp(r)(cosθ + i sinθ)exp(r)(cosθ - i sinθ)
= exp(r)^2 |cosθ + i sinθ|^2 ∴ |exp(iθ)| = 1
θを微小とすれば exp(iθ)≒ 1 + iθ だから中間値の定理でexp(iθ)を 1 のn乗根にできる
すなわち exp(iθ)はθの周期関数
252: 132人目の素数さん [sage] 2020/02/23(日) 18:01:23.51 ID:x1qWF4GD(2/8) AAS
>>242
 f(z+w) = Σ[k=0,∞] (z+w)^k /k!
   = Σ[k=0,∞] Σ[m+n=k] (z^m /m!)(w^n /n!)  (2項公式)
   = (Σ[m=0,∞] z^m /m!)(Σ[n=0,∞] w^n /n!)
   = f(z) f(w)  ・・・・ 指数公式
いま
 f(iy) = cos(y) + i・sin(y)
とおく。
 cos(y) = Re{f(iy)} = Σ[k=0,∞] (-1)^k y^(2k)/(2k)!
 sin(y) = Im{f(iy)} = Σ[k=0,∞] (-1)^k y^(2k+1) /(2k+1)!

指数公式
 f(iny) = f(iy)^n,
は ド・モァヴルの公式
 cos(ny) + i・sin(ny) = {cos(y)+i・sin(y)}^n,
となり、実数部と虚数部に分ければ n倍角公式 が出る。
 f(iy)f(-iy) = f(0) = 1,
より
 cos(y)^2 + sin(y)^2 = 1,
260: 242 [sage] 2020/02/23(日) 19:22:13.94 ID:sm1T7+nt(3/3) AAS
>>253 あぁ...中間値の定理をそこで使うんですね。少し誤解してました。
cos(0) = +1
cos(2) = 1 - 2^2/2! + 2^4/4! - 2^6/6! + 2^8/8! - ...
< 1 - 2^2/2! + 2^4/4! - 2^6/6! +2^8/8! * (1 + 0 + 2^4/8^4 + 0 + 2^8/8^8...)
< 1 - 2^2/2! + 2^4/4! - 2^6/6! +2^8/8! * 2
= -43/105 < 0
∴ あるp∈(0,2) について cos(p) = 0, sin(p) = ±1 (正負を知る必要はない)
exp(ip)^4 = ( 0 ± i )^4 = 1 つまり4乗根が得られたので
exp(i(x+4p)) = exp(ix) * exp(i4p) = exp(ix) * exp(ip)^4 = exp(ix)
exp(ix) の周期は 4p (或いはその何分の一) である。とりあえずここまででOKです。

他のみなさんもありがとうございました。先を考える参考になります。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.040s