[過去ログ] 分からない問題はここに書いてね458 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
181
(1): 哀れな素人 [] 2020/02/21(金) 16:52:48.25 ID:vIRKdDZf(3/7) AAS
>>180
>>169の問題の答えだけ書いても質問者は納得できないだろうから、
一応説明しておくと−

(1)は説明省略。
(2)この問題は(3)が一番難しい。僕が考えたのは−
PAの最大値はPAが直径のときで、そのときPA=BCだから
PA+PB+PC≦BC+BP+CP
つまりBC+BP+CPが最大のときを考えればよく、
BCは一定だからBP+CPが最大のときを考えればよい。
BP+CPが最大になるのはどの時かは二つの考え方がある。
? 周長が長いほど面積は大きい。→面積が最大のときを考えればよい。
? 相加平均≧相乗平均より、BP=CPのときがBP+CPは最大。
ゆえにBP=CP=5√2 APは方べきの定理より7√2
(3)は(2)の説明の通り。
(4)円周角の定理により∠BCQ=∠BAQ=45°
ゆえにAH=7 あとは△AHCに三平方の定理を適用して√113
183
(1): 132人目の素数さん [sage] 2020/02/21(金) 17:16:03.68 ID:+3ZHERdh(2/3) AAS
>>181
> PA+PB+PC≦BC+BP+CP
これはその通りですけど
> つまりBC+BP+CPが最大のときを考えればよく、
> BCは一定だからBP+CPが最大のときを考えればよい。
これってそうでしょうか?
BP+CPがその最大値よりもx小さいときのPAがBP+CPがその最大値を取るときのPAよりもxを超えて大きくなることがあり得ないと言えているのでしょうか
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.046s