[過去ログ] 分からない問題はここに書いてね458 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
105
(1): 132人目の素数さん [sage] 2020/02/14(金) 21:42:34.20 ID:U/iqVjXd(2/2) AAS
不等式
x^2+y^2 < (x^2+y^2+z^2)/3 < 2z
を満たすx≦y≦zなる自然数を全て求めよ。
106: 132人目の素数さん [] 2020/02/15(土) 01:09:34.62 ID:aay8PZgZ(1) AAS
>>105
x^2+y^2 < (x^2+y^2+z^2)/3 < 2z
(x^2+y^2+z^2)/3 < 2z
=> 6z-z^2=z(6-z)>0 より 1<=z<=5

x^2+y^2 < (x^2+y^2+z^2)/3
=> (z^2)/2 > x^2+y^2
∴ min((z^2)/2, 6z-z^2) > x^2+y^2
z=1,2,3,4,5のとき左辺は
1/2,2,9/2,8,5
(面倒なので)0は自然数でないとする
z=3 => (x,y)=(1,1)
z=4 => (x,y)=(1,1),(1,2)
z=5 => (x,y)=(1,1)
(x,y,z)=(1,1,3),(1,1,4),(1,1,5),(1,2,4)
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.038s