[過去ログ] 分からない問題はここに書いてね458 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
251: 132人目の素数さん [sage] 2020/02/23(日) 17:19:27.05 ID:x1qWF4GD(1/8) AAS
|exp(iα)| = 1 だから
{exp(iα) | α∈R} の軌跡は1を通り有界な曲線。
櫛歯形などの無限に長い曲線かも知れないが・・・・
252: 132人目の素数さん [sage] 2020/02/23(日) 18:01:23.51 ID:x1qWF4GD(2/8) AAS
>>242
 f(z+w) = Σ[k=0,∞] (z+w)^k /k!
   = Σ[k=0,∞] Σ[m+n=k] (z^m /m!)(w^n /n!)  (2項公式)
   = (Σ[m=0,∞] z^m /m!)(Σ[n=0,∞] w^n /n!)
   = f(z) f(w)  ・・・・ 指数公式
いま
 f(iy) = cos(y) + i・sin(y)
とおく。
 cos(y) = Re{f(iy)} = Σ[k=0,∞] (-1)^k y^(2k)/(2k)!
 sin(y) = Im{f(iy)} = Σ[k=0,∞] (-1)^k y^(2k+1) /(2k+1)!

指数公式
 f(iny) = f(iy)^n,
は ド・モァヴルの公式
 cos(ny) + i・sin(ny) = {cos(y)+i・sin(y)}^n,
となり、実数部と虚数部に分ければ n倍角公式 が出る。
 f(iy)f(-iy) = f(0) = 1,
より
 cos(y)^2 + sin(y)^2 = 1,
253
(1): 132人目の素数さん [sage] 2020/02/23(日) 18:04:51.69 ID:x1qWF4GD(3/8) AAS
次に cos(y), sin(y) の零点をさがす。
cos(0) = 1,
cos(2) = Σ[k=0,∞] (-1)^k (4^k)/(2k)!
 = 1 -4/(2!) + 16/(4!) - 64/(6!) + ・・・
 = 1 -2 +2/3 -4/45 + ・・・・
 < 0
0<y<2 に cos(y) の零点 p/2 がある。
 cos(p/2) = 0,
 sin(p) = 2sin(p/2)cos(p/2) = 0,
0<y<4 に sin(y) の零点pがある。
255: 132人目の素数さん [sage] 2020/02/23(日) 18:14:47.32 ID:x1qWF4GD(4/8) AAS
cos(p) = 2cos(p/2)^2 -1 = -1,
f(i(p/n))^n = f(ip) = cos(p) + i・sin(p) = -1,
f(i2p) = (-1)^2 = 1,
257: 132人目の素数さん [sage] 2020/02/23(日) 18:34:32.17 ID:x1qWF4GD(5/8) AAS
指数公式から
 f(z+2pi) = f(z)f(2pi) = f(z),

定義(マクローリン展開)から
 {sin(y)} ' = cos(y),
 {cos(y)} ' = -sin(y),
も出る。

>>254
 cos(y)^2 + sin(y)^2 = f(iy)f(-iy) = f(0) = 1,
から有界であることは分かりますが・・・
261
(1): 132人目の素数さん [sage] 2020/02/23(日) 20:08:14.65 ID:x1qWF4GD(6/8) AAS
 -1が平方剰余.
 ((-1)/n) = 1.
 x^2≡-1 (mod n) が解をもつ.
 平方剰余の分布が対称的.
   ↓
 k=1,2,・・・・,n-1 における mod(k^2,n) の平均が n/2.
 Σ[k=1,n-1] mod(k^2,n) = n(n-1)/2.
267: 132人目の素数さん [sage] 2020/02/23(日) 22:53:46.80 ID:x1qWF4GD(7/8) AAS
nが合成数のときは nと素な元を集めた集合 {k|gcd(k,n)=1、正則元} = (Z/nZ)^ で考える方が良いでしょうね。
そうすれば
-1が平方剰余 (mod n)
  ↓
(Z/nZ)^ における mod(k^2,n) の平均が n/2.
Σ[k∈(Z/nZ)^] mod(k^2,n) = nφ(n)/2. 
φ(n)はオイラーのtotient関数です。
268
(1): 132人目の素数さん [sage] 2020/02/23(日) 23:29:09.89 ID:x1qWF4GD(8/8) AAS
 -1 が平方剰余 (mod n)
 n=Πp ならば ((-1)/n) = Π((-1)/p),

〔第一補充法則〕
 ((-1)/p) = 1  (p=4k+1 または p=2)
    = -1  (p=4k+3)
nが 4k+3型の素数pを全部でいくつ含むか、で決まる。
 偶数個か0 → +1 → 等号
 奇数個 → -1 → 不等号
でしょうか・・・・
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.030s