[過去ログ] 分からない問題はここに書いてね458 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
917: 132人目の素数さん [sage] 2020/03/27(金) 13:20:44.65 ID:vg0i1FkQ(1) AAS
1変数でやってみた.
f[m](x) := Σ[k=1..n] C{n,k}(-1)^{k+1} x^k/k^m
h[m](x) := Σ[1≦k_m≦...≦k_1≦n] (1-(1-x)^{k_m}) / (k_1*k_2*...*k_m)
・f[1](x) = h[1](x) は証明済み.
・f[q](x) = h[q](x) を仮定する.
・f[q+1](x) = ∫[t=0,x]dt f[q](t) / t = ∫[t=0,x]dt h[q](t) / t
= Σ[1≦k_q≦..≦k_1≦n] 1/(k_1*k_2*..*k_q)
* ∫[t=0,x]dt (1-(1-t)^{k_q})/(1-(1-t))
= Σ[1≦k_q≦..≦k_1≦n] 1/(k_1*k_2*..*k_q)
* Σ[k=0..k_q-1] ∫[t=0,x]dt (1-t)^k
= Σ[1≦k_q≦..≦k_1≦n] 1/(k_1*k_2*..*k_q)
* Σ[k=1..k_q] (1-(1-x)^k)/k
= h[q+1](x)
帰納法により h[m](x)=f[m](x) (m=1..∞)
∴Σ[k=1..n] C{n,k}(-1)^{k+1}/k^m = f[m](0) = h[m](0)
= Σ[1≦k_1≦..≦k_m≦n] 1/(k_1*k_2*..*k_m)
何か応用例があるのなら知りたいです.
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.037s