[過去ログ] 分からない問題はここに書いてね458 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
274(1): イナ ◆/7jUdUKiSM [sage] 2020/02/24(月) 10:04:45.87 ID:st+AszZ0(1/5) AAS
前>>219
P(x,y),A(-1.4,4.8),B(-5,0),C(5,0)とすると、
x^2+y^2=25
PA=√{(x+1.4)^2+(4.8-y)^2}
=√(25+2.8x+4・1.96+16・1.44-9.6y)
=√(2.8x-9.6y+41+0.64+0.064+7.84)
=√(2.8x-9.6y+48.84+0.704)
=√(2.8x-9.6y+49.544)
PB=√{(x+5)^2+y^2}
=√(25+10x+25)
=√(50+10x)
PC=√{(5-x)^2+y^2}
=√(50-10x)
PA+PB+PC=√(2.8x-9.6y+49.544)+√(50+10x)+√(50-10x)
={2.8x+9.6(25-x^2)^(1/2)+49.544}^(1/2)+(50+10x)^(1/2)+(50-10x)^(1/2)
微分し=0とすると、
(1/2){2.8x+9.6(25-x^2)^(1/2)+49.544}^(-1/2){2.8+4.8(25-x^2)^(-1/2)}+(1/2)(50+10x)^(-1/2)+(1/2)(50-10x)^(-1/2)=0
{2.8x+9.6(25-x^2)^(1/2)+49.544}^(-1/2){2.8+4.8(25-x^2)^(-1/2)}+(50+10x)^(-1/2)+(50-10x)^(-1/2)=0
{2.8x+9.6(25-x^2)^(1/2)+49.544}^(1/2){2.8+4.8(25-x^2)^(-1/2)}+{2.8x+9.6(25-x^2)^(1/2)+49.544}(50+10x)^(-1/2)+{2.8x+9.6(25-x^2)^(1/2)+49.544}(50-10x)^(-1/2)=0
xの値は、1.4よりちっさなりそうな予感がします。
288(1): イナ ◆/7jUdUKiSM [sage] 2020/02/24(月) 14:45:10.45 ID:st+AszZ0(2/5) AAS
前>>274
>>245
求める円の半径をxとおくと、AとBに外接しCに内接する円の中心をDとして、△DBAおよび△DBCにおいて余弦定理より、
cos∠DBA={(b/2+x)^2+(a/2+b/2)^2-(a/2+x)^2}/2(b/2+x)(a/2+b/2)
cos∠DBC={(b/2+x)^2+(a/2)^2-(a/2+x)^2}/2(b/2+x)(a/2)
cos∠DBA=cos∠DBCより、
{(b/2+x)^2+(a/2+b/2)^2-(a/2+x)^2}a
={(b/2+x)^2+(a/2)^2-(a/2+x)^2}(a+b)
{(b+2x)^2+(a+b)^2-(a+2x)^2}a
={(b+2x)^2+a^2-(a+2x)^2}(a+b)
(b^2+4bx+4x^2+a^2+2ab+b^2-a^2-4ax-4x^2)a
=(b^2+4bx+4x^2+a^2-a^2-4ax-4x^2)(a+b)
ab^2+4abx+4ax^2+2a^2b+ab^2-4a^2x-4ax^2
=ab^2+4abx+4ax^2-4a^2x-4ax^2+b^3+4b^2x+4bx^2-4abx-4bx^2
2a^2b+ab^2
=b^3+4b^2x-4abx
2a^2+ab
=b^2+4bx-4ax
4(a-b)x=b^2-ab-2a^2
x=(b^2-ab-2a^2)/4(a-b)
290(1): イナ ◆/7jUdUKiSM [sage] 2020/02/24(月) 15:41:29.88 ID:st+AszZ0(3/5) AAS
前>>288
符号が変だ。訂正する。
294(1): イナ ◆/7jUdUKiSM [sage] 2020/02/24(月) 17:18:19.43 ID:st+AszZ0(4/5) AAS
前>>290
>>245
求める円の半径をxとおくと、AとBに外接しCに内接する円の中心をDとして、△DBAおよび△DBCにおいて余弦定理より、
cos∠DBA=[(b/2+x)^2+{(a+b)/2}^2-(a/2+x)^2]/{2(b/2+x)(a+b)/2}
={(b+2x)^2+(a+b)^2-(a+2x)^2}/2(b+2x)(a+b)
cos∠DBC=[(b/2+x)^2+(a/2)^2-{(a+b)/2-x}^2]/2(b/2+x)(a/2)
={(b+2x)^2+a^2-(a+b-2x)^2}/2(b+2x)a
cos∠DBA=cos∠DBCより、
(b^2+4bx+4x^2+a^2+2ab+b^2-a^2-4ax-4x^2)a=(b^2+4bx+4x^2+a^2-a^2-b^2-4x^2-2ab+2ax+2bx)(a+b)
(2b^2+4bx+2ab-4ax)a=(4bx-2ab+2ax+2bx)(a+b)
(2b^2+4bx+2ab-4ax)a=(4bx-2ab+2ax+2bx)a+(4bx-2ab+2ax+2bx)b
2ab^2+4abx+2a^2b-4a^2=4abx-2a^2b+2a^2x+2abx+4b^2x-2ab^2+2abx+2b^2x
2ab^2+2a^2b-4a^2+2a^2b+2ab^2=2a^2x+2abx+4b^2x+2abx+2b^2x
x=(2ab^2+2a^2b-4a^2+2a^2b+2ab^2)/(2a^2+2ab+4b^2+2ab+2b^2)
=(4ab^2+4a^2b-4a^2)/(2a^2+4ab+6b^2)
=(2ab^2+2a^2b-2a^2)/(a^2+2ab+3b^2)
=2a(b^2+ab-a)/(a^2+2ab+3b^2)
いまいちおっきいな。
手書きだとx=2ab/3(a+b)
携帯で検算すると変わった。
295(2): イナ ◆/7jUdUKiSM [sage] 2020/02/24(月) 17:50:56.13 ID:st+AszZ0(5/5) AAS
前>>294訂正。
>>245
求める円の半径をxとおくと、AとBに外接しCに内接する円の中心をDとして、△DBAおよび△DBCにおいて余弦定理より、
cos∠DBA=[(b/2+x)^2+{(a+b)/2}^2-(a/2+x)^2]/{2(b/2+x)(a+b)/2}
={(b+2x)^2+(a+b)^2-(a+2x)^2}/2(b+2x)(a+b)
cos∠DBC=[(b/2+x)^2+(a/2)^2-{(a+b)/2-x}^2]/2(b/2+x)(a/2)
={(b+2x)^2+a^2-(a+b-2x)^2}/2(b+2x)a
cos∠DBA=cos∠DBCより、
(b^2+4bx+4x^2+a^2+2ab+b^2-a^2-4ax-4x^2)a=(b^2+4bx+4x^2+a^2-a^2-b^2-4x^2-2ab+2ax+2bx)(a+b)
(2b^2+4bx+2ab-4ax)a=(4bx-2ab+2ax+2bx)(a+b)
(2b^2+4bx+2ab-4ax)a=(4bx-2ab+2ax+2bx)a+(4bx-2ab+2ax+2bx)b
2ab^2+4abx+2a^2b-4a^2x=4abx-2a^2b+2a^2x+2abx+4b^2x-2ab^2+2abx+2b^2x
2ab^2+2a^2b+2a^2b+2ab^2=2a^2x+4a^2x+2abx+4b^2x+2abx+2b^2x
x=(2ab^2+4a^2b+2ab^2)/(2a^2+4a^2+2ab+4b^2+2ab+2b^2)
=(4ab^2+4a^2b)/(6a^2+4ab+6b^2)
=(2ab^2+2a^2b)/(3a^2+2ab+3b^2)
=2ab(a+b)/(3a^2+2ab+3b^2)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.045s