[過去ログ] 分からない問題はここに書いてね458 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
748: 132人目の素数さん [sage] 2020/03/20(金) 00:29:17.58 ID:p5Mf5Wxl(1/3) AAS
>>746
L→∞で正規分布が出てくる関係かな?
確率密度関数に1/√(2π)というのがあったような
757: 132人目の素数さん [sage] 2020/03/20(金) 07:51:30.64 ID:p5Mf5Wxl(2/3) AAS
>>746
L個の実数を一様分布で抽出して2〜50でシミュレーションしてみた。
https://i.imgur.com/ppslW60.png
Lが大きくなると1-( (6/(π×L))^(1/2) )に一致するようです。
数理は賢者にお任せ。
rm(list=ls())
f45 <- function(a) { # 四捨五入
x=a-floor(a) # floor(a):aを超えない整数ガウス記号[x]と同じ,x:小数部分をxに入れる
floor(a)+ (x>=0.5) # xが0.5以上なら1をそうでないなら0を加える
}
f45(1.5) ; f45(2.5)
round(1.5) ; round(2.5)
sim <- function(n=3,k=1e4){
sub <- function(n){
x=runif(n) # 一様分布乱数(実数)n個の配列 roundならrunif(n,0,2)
y=numeric(n) # y:四捨五入での整数を入れる配列
for(i in 1:n) y[i]=f45(x[i]) # xの各実数を四捨五入してyに入れる
f45(sum(x))!=sum(y) # xの総和の四捨五入数とyの総和が異なればTRUEを返す
}
r=mean(replicate(k,sub(n))) # k個のシミュレーションでのTRUEの頻度を返す
p=1-( sqrt(6/(pi*n)) ) # 理論値?
return(c(r,p))
}
L=2:50
plot(L,sapply(L,function(x) 1-( sqrt(6/(pi*x)))),bty='l',type='l')
re=t(sapply(L,function(x) sim(x)))
plot(re,bty='l',pch=19,asp=1,xlab='実験値',ylab='理論値',type='l')
abline(a=0,b=1,lty=3)
762(2): 132人目の素数さん [sage] 2020/03/20(金) 13:05:55.24 ID:p5Mf5Wxl(3/3) AAS
>>746
四捨五入前の支払いが5.5,4.5,3.5,2.5,1.5とするとAは-2円にならないかな?
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.039s