[過去ログ] 分からない問題はここに書いてね458 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
164(1): 132人目の素数さん [sage] 2020/02/21(金) 00:46:10.30 ID:asHAZWcA(1/2) AAS
閉区間I=[0,1]上の連続関数f:I→Rの全体をC[0,1]とし、C[0,1]上の距離を
d(f,g):=max{|f(t)-g(t)||0≦t≦1}
によって定める。C[0,1]の部分集合Xを
X={f_k|f_k(t)=kt, k∈R}
とおくとき
d(X)=inf[f∈X]d(f,1)
の値を求めよ(ただし1は定数関数1(t)=1)
答えはd(X)=1となってます
k>1のときd(f_k,1)=「|kt-1|の最大値」=k-1だから、k∈Rについて下限をとるとd(X)=0になるのでは?と思うのですが、これは何が違うのでしょうか?
167: 132人目の素数さん [sage] 2020/02/21(金) 01:29:23.50 ID:asHAZWcA(2/2) AAS
>>165
あーそうか、最大値がそもそもk-1じゃないなこれ
k=3/2のときmax|kt-1|はk-1=1/2ではなくt=0のときの1だろう……アホなことしてたわ
ありがとうございます
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.039s