[過去ログ] 分からない問題はここに書いてね458 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
107: 132人目の素数さん [sage] 2020/02/15(土) 01:12:12.01 ID:9gkMRXwC(1) AAS
3次元空間の閉曲面
C:x^2n+y^2n+z^2n=1(nは2以上の自然数の定数)
と共有点を持つ平面のうち、Cと平面の共有点全体がなす曲線に囲まれる部分の面積を最大とするものをπとする。

【問題】
平面αが色々動くとき、αとCの共有点全体がなす曲線の周長をL(α)とする。
L(α)が最大となるのは、αがπと一致するときかどうかを判定せよ。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.038s