[過去ログ] 分からない問題はここに書いてね458 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
678
(1): 132人目の素数さん [] 2020/03/16(月) 19:16:34.40 ID:8zVl3xLP(1/3) AAS
>>651を書いたものです

>>658
b_i(k)の定義がよくわからないです…。
a(k)は√の整数部分ですよね。b_i(k)はa(k)をiで割った余り?
だとすると0≦b_i(k)≦i-1か1≦b_i(k)≦iのどちらかのような気がするんですが
j=0のときはb_i(k)=0とb_i(k)=iを両方考えるんですか?

あと、>>651ではnは偶数でも奇数でもOKである、という予想です。
679: 132人目の素数さん [] 2020/03/16(月) 19:18:36.76 ID:8zVl3xLP(2/3) AAS
>>667
後半、typoや議論の重複があるので、少し丁寧めにまとめるとこうなるかな?

(補題1) (□には <、≦、>、≧ のうちどれか1つが入る)
i □ √{j(n+1)}
⇔i^2 □ (n+1)j
⇔(n-i+1)^2=(n+1-i)^2=(n+1)(n+1-2i)+i^2 □ (n+1)(n+1-2i)+(n+1)j=(n+1)(n-2i+j+1)
⇔(n-i+1)^2 □ (n+1)(n-2i+j+1)
⇔n-i+1 □ √(n-2i+j+1)(n+1)

(補題2) 補題1でiにi+1とかjにj-1やj+1を入れたものを含めると、次の4つがわかる
i □ √{(j-1)(n+1)}⇔n-i+1 □ √(n-2i+j)(n+1)
i □ √{j(n+1)}⇔n-i+1 □ √(n-2i+j+1)(n+1)
i+1 □ √{j(n+1)}⇔n-i □ √(n-2i+j-1)(n+1)
i+1 □ √{(j+1)(n+1)}⇔n-i □ √(n-2i+j)(n+1)

この補題2の4つを使うと、次の3つのことがいえる

[i,i+1)に√{k(n+1)}の形が2個含まれる
⇔あるjが存在し, i≦√{j(n+1)},√{(j+1)(n+1)}<i+1
⇔あるjが存在し, √{(n-2i+j)(n+1)}<n-i,n-i+1≦√{(n+1)(n-2i+j+1)}
⇒[n-i,n-i+1)に√{k(n+1)}の形は0個含まれる

[i,i+1)に√{k(n+1)}の形が1個のみ含まれる
⇔あるjが存在し, √{(j-1)(n+1)}<i≦√{j(n+1)}<i+1≦√{(j+1)(n+1)}
⇔あるjが存在し, √(n-2i+j-1)(n+1)<n-i≦√(n-2i+j)(n+1)<n-i+1≦√(n-2i+j+1)(n+1)
⇒[n-i,n-i+1)に√{k(n+1)}の形は1個含まれる

[i,i+1)に√{k(n+1)}の形が0個含まれる
⇔あるj(0かnかもしれない)が存在し, √{j(n+1)}<i,i+1≦√{(j+1)(n+1)}
⇔あるj(0かnかもしれない)が存在し, n-i≦√{(n-2i+j)(n+1)},√{(n+1)(n-2i+j+1)}<n-i+1
⇒[n-i,n-i+1)に√{k(n+1)}の形は2個含まれる
681: 132人目の素数さん [] 2020/03/16(月) 20:13:24.31 ID:8zVl3xLP(3/3) AAS
>>678への自己レス。
もしj=0のときは条件「b_i(k)=i」は単に「b_i(k)=0」と同じ条件と考える、のだったら、
>>658はあってそうです。

>>667の最後の段落について。
いや、前段までの論法で既に、整数部分がn/2より大のエリアと
整数部分がn/2より小のエリアでの、[i,i+1)∪[n-i,n-i+1)に必ず整数部分が2個含まれるという"対称性"は示されているから、
より大エリアでの余りがjなら、より小エリアでの余りは-jなわけで、
全体をトータルで考えて和をとれば2倍カウントすることになるわけで、「ほぼ」証明終わってませんか?

しかし、Excel眺めてるだけではこの"2個対称性"は気付かなかったな…
いわれてみれば確かにそうなのですが、すごい
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.040s