[過去ログ] 分からない問題はここに書いてね458 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
677(1): 132人目の素数さん [sage] 2020/03/16(月) 18:19:33.71 ID:4LLVPoPK(1/2) AAS
>>673
複素平面上で考える。
O=0, A=1, B=e^(iπ/3), C=e^(i2π/3) = B - 1, ... , E= -B, ...
G = A + AB*t = 1 + (e^(iπ/3)-1)*t = 1 + C*t ( t ∈ [0,1] )
と置くと
H = G + GC * e^(iπ/3) = (1 + e^(i2π/3)*t) + (e^(i2π/3) - 1 - e^(i2π/3)*t) * e^(iπ/3)
= (e^(i2π/3) + 1)*t - e^(iπ/3)
= B*(t - 1) = t*O + (1-t)*E
∴ HはOE線分上にのる。
684: 132人目の素数さん [sage] 2020/03/16(月) 21:27:59.56 ID:4LLVPoPK(2/2) AAS
>>682 各自やりやすいと思う方法で解けばいいと思います。
逆に私は
> 平面図形で「同一直線上⇔∠OGE=180°」を使う
こちらの方法が分からないので教えて欲しいです。
( ∠OGE=180° は別の何かの書き間違いだと思いますが )
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.033s