[過去ログ] 分からない問題はここに書いてね458 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
753
(2): 132人目の素数さん [sage] 2020/03/20(金) 03:36:59.33 ID:1YkioBb1(1/5) AAS
>>751
f(x) = 1  x∈(1/2,1]
f(x) = 0  x∈(1/2^2,1/2]
f(x) = 1  x∈(1/2^3,1/2^2]
.. . .
f(x) = 1 x∈(1/2^{2k+1}, 1/2^{2k} ]
f(x) = 0 x∈(1/2^{2k+2}, 1/2^{2k+1}]
(マイナス側も同様に定義)

lim[x->0](f(x)+f(2x))=1 (有限確定)
lim[x->0] f(x) (不確定)
754
(1): 132人目の素数さん [sage] 2020/03/20(金) 03:52:29.56 ID:1YkioBb1(2/5) AAS
>>750
x1y1+x2y2……xnynが偶数(=2m) になるパターンは
(x,y)=(1,1)のペアが 2m個、他のペア(n-2m 個)は (0,0)(0,1)(1,0) のどれかの組み合わせ

Pn = Σ[0≦2m≦n] C{n,2m} 3^(n-2m) /(2^n * 2^n)
 = Σ[0≦k≦n] C{n,k} 3^(n-k) (1 + (-1)^k)/2 /4^n
二項定理より
2 Pn = (3+1)^n /4^n + (3-1)^n /4^n
 = (3/4 + 1/4)^n + (3/4 - 1/4)^n
759: 132人目の素数さん [sage] 2020/03/20(金) 09:46:50.78 ID:1YkioBb1(3/5) AAS
>>746
ランダム整数: x[i] {なんらかの範囲の一様分布}
ランダム偏差: α[i] ∈ [-0.5,0.5) {一様分布}
A = Σ[i=1,L] round(x[i]+α[i]) = Σ[i=1,L] x[i]
B = round( Σ[i=1,L](x[i]+α[i]) ) = A + round(Σ[i=1,L]α[i])
A=B ⇔ -0.5 < α[1]+α[2]+...+α[L] < 0.5

s := α[1]+α[2]+...+α[L]
中心極限定理より Lが大の時、
確率分布: f(s) ≒ 1/√(2πσσ) * exp(- s^2/(2σσ) )
標準偏差: σ ≒ (√L)* σ1, ( σ1 := √{ ∫[α=-0.5,+0.5] α^2 dα } = 1/√12 )

1-P = ∫[s=-0.5,+0.5] f(s) ds ≒ 1/√(2πσσ) = √(6/(πL))
760: 132人目の素数さん [sage] 2020/03/20(金) 09:53:19.40 ID:1YkioBb1(4/5) AAS
訂正
> ランダム整数: x[i] {なんらかの範囲の一様分布}
こちらはランダムである必要はなかった
764
(1): 132人目の素数さん [sage] 2020/03/20(金) 15:29:24.36 ID:1YkioBb1(5/5) AAS
kが奇数の時に 0 、偶数の時に 1 となるので
これで偶数項のみ取り出した和 (一つ上の式) と等価になります。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.040s