[過去ログ] 分からない問題はここに書いてね458 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
6: 132人目の素数さん [] 2020/02/10(月) 14:44:10.89 ID:UyibQCpj(2/4) AAS
この問題もなぜこのように行列式を方程式に変換できているのですか?
私事で申し訳ないのですが早めに教えていただけると助かります😭
https://i.imgur.com/vE9BVGg.jpg
127(1): 132人目の素数さん [] 2020/02/19(水) 19:42:17.89 ID:8K6AO46k(1) AAS
>>126
ブー 誤り
正しい確率は0.30102…
215(2): 169 [sage] 2020/02/22(土) 13:59:42.89 ID:cPpHE1j8(1) AAS
>>214
お前の解答はゴミ、正解と全然ちゃうわ。無駄な時間お疲れさん
他の皆様の解答は大筋その方針でOK
難関高校の問題をノーヒントにして設問(3)(4)を追加してみたが、トレミーの定理って高校受験の常識じゃなかったよか、意外に難しかったか
(1)は易しすぎるが高校入試風味を出すために残しておいた
217: 132人目の素数さん [sage] 2020/02/22(土) 14:16:17.89 ID:InYZG21C(3/4) AAS
>>211 訂正スマソ
AP = ak - (b+a)/k - (c+a)/k,
268(1): 132人目の素数さん [sage] 2020/02/23(日) 23:29:09.89 ID:x1qWF4GD(8/8) AAS
-1 が平方剰余 (mod n)
n=Πp ならば ((-1)/n) = Π((-1)/p),
〔第一補充法則〕
((-1)/p) = 1 (p=4k+1 または p=2)
= -1 (p=4k+3)
nが 4k+3型の素数pを全部でいくつ含むか、で決まる。
偶数個か0 → +1 → 等号
奇数個 → -1 → 不等号
でしょうか・・・・
308: 132人目の素数さん [sage] 2020/02/25(火) 17:38:48.89 ID:jG10DX84(1) AAS
そんなに話かんたんなわけない。
issqare n = (==n) $ (^2) $ truncate $ sqrt n
ss n = (2*) $ sum [mod (k^2) n | k<-[1..n]]
rec n =(n, ss n, n*(n-1))
main = do
mapM_ print $ take 30 $ map rec [
(1,0,0)
(2,2,2)
(3,4,6)
(4,4,12)
(5,20,20)
(6,26,30)
(7,28,42)
(8,24,56)
(9,48,72)
(10,90,90)
(11,88,110)
(12,76,132)
(13,156,156)
(14,154,182)
(15,140,210)
(16,112,240)
(17,272,272)
(18,258,306)
(19,304,342)
(20,260,380)
(21,364,420)
(22,418,462)
(23,368,506)
(24,296,552)
(25,500,600)
(26,650,650)
(27,576,702)
(28,588,756)
(29,812,812)
(30,730,870)
413(2): 132人目の素数さん [] 2020/03/03(火) 18:26:29.89 ID:C04HU1Lb(5/5) AAS
>>412
ありがとうございました。
さすが数学のプロですね。
553(2): イナ ◆/7jUdUKiSM [sage] 2020/03/09(月) 05:44:47.89 ID:otlyxJ1y(2/6) AAS
前>>551
>>515(2)前半
x軸とy軸に平行な4つの直線で囲まれた長方形を1:2に分ける放物線を作図し、
P(p,p^2)(p<0),Q(q,q^2)(q<0)として、
長方形も放物線も(1or2or3)/3×縦(x軸方向)×横(y軸方向)で立式すると、
E=(2/3)(q-c)(q^2-b)+(q-c)(b-p^2)+(1/3)(p-q)(q^2-p^2)-(1/3)(p-c)(b-p^2)
F=(2/3)(-2c)c^2-(1/3)(-2c)(c^2-b)+(1/3)(p-c)(c^2-p^2)-E-(1/3)(p-c)(b-p^2)
Fは引きすぎてから足して足しすぎたぶんを引く感じ。Eを引いてるからEを代入し、
F=(2/3)(-2c)c^2-(1/3)(-2c)(c^2-b)+(1/3)(p-c)(c^2-p^2)
-{(2/3)(q-c)(q^2-b)+(q-c)(b-p^2)+(1/3)(p-q)(q^2-p^2)-(1/3)(p-c)(b-p^2)}
-(1/3)(p-c)(b-p^2)
=-4c^3/3+2c^3/3-2bc/3+p(c^2-p^2)/3-c(c^2-p^2)/3
-(2/3)(q-c)(q^2-b)-(q-c)(b-p^2)-(1/3)(p-q)(q^2-p^2)+(1/3)(p-c)(b-p^2)
-(1/3)(p-c)(b-p^2)
=-4c^3/3+2c^3/3-2bc/3+p(c^2-p^2)/3-c(c^2-p^2)/3-(2/3)(-2p)(q^2-b)-(-2p)(b-p^2)-(1/3)(3p-c)(2b-pc)
=-4c^3/3+2c^3/3-2bc/3+p(c^2-p^2)/3-c(c^2-p^2)/3+(4p/3)(b-2pc+b^2)+2p(b-p^2)-(p-c/3)(2b-pc)
=-4c^3/3+2c^3/3-2bc/3+c^2p/3-p^3/3-c^3/3+p^2c/3+4pb/3-8pc/3+4pb^2/3+2pb-2p^3-2pb+p^2c+2bc/3-pc^2/3
=-4c^3/3+c^3/3-7p^3/3+4p^2c/3+4pb/3-8pc/3+4pb^2/3
=-c^3-7p^3/3+4p^2c/3+4pb/3-8pc/3+4pb^2/3
(2)後半につづく。
686: 132人目の素数さん [sage] 2020/03/17(火) 02:46:21.89 ID:wiT2shNR(1) AAS
aを正の定数とする。n=1,2,...に対して関数f_n(x)を、
f_1(x)=ax(x-1)
f_n+1(x)=f(f_n(x))
により順次定めていく。
(1)0<α<1かつ0<f_1(α)<1となるようなαの範囲をaで表せ。
(2)0<β<1とする。すべての自然数kに対して0<f_k(β)<1となるようなβの範囲をaで表せ。
(3)(2)においてβが取りうる値の範囲をs<β<tと表すとき、極限値lim[a→∞](t-s)を求めよ。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.042s