[過去ログ] 分からない問題はここに書いてね458 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
30(1): 132人目の素数さん [sage] 2020/02/10(月) 23:21:42.43 ID:kzdjJ4GH(1/3) AAS
c,d:1より大きい整数
an+b=cd
cd≡b (mod a)
cd≡an (mod b)
x,y:整数
b+ax=an+by=an+b
x=n, y=1
36(1): 132人目の素数さん [sage] 2020/02/10(月) 23:50:02.43 ID:F2GTuXrp(4/4) AAS
>>35
既約多項式でお願いいたします。
86: 132人目の素数さん [sage] 2020/02/13(木) 07:00:21.43 ID:QlSlHm7T(1/3) AAS
2次関数
f(x)=ax^2+bx+c
g(x)=cx^2+bx+a
を考える。
条件『-1≦x≦1において|g(x)|≦1』を満たすように実数a,b,cを変化させるとき、-1≦x≦1における|f(x)|の最小値の最大値を求めよ。
100: 132人目の素数さん [sage] 2020/02/14(金) 01:24:40.43 ID:+LIgRaQK(1) AAS
>>97
ありがとうございます。
単体複体の像全体Vがコンパクトなので、Vの各点を(多様体の座標でみた)開球で覆っておいて
コンパクト性からそのうちの有限個で被覆できるため、それらの和をUとするとUの閉包は閉球の有限和なのでコンパクト
という感じで構成できました、感謝です。
146: 132人目の素数さん [] 2020/02/20(木) 16:24:37.43 ID:1BmL9yiS(1) AAS
>>136
ありがとうございます。
a,bを正の数としたとき、関数f(x)=1/(x^a(x^b+1)) のラプラス変換の収束座標を求めよ。
お願いします。
199(1): 哀れな素人 [] 2020/02/21(金) 21:37:42.43 ID:vIRKdDZf(7/7) AAS
>>195をクリックしたが、ページは現れなかった。
だから僕の答えが間違っているのかもしれないが、
>>196に答えておくと−
周長が長ければ面積は大きい→面積が最大ならPA+PB+PCが最大、
という理由によって僕の解答のQの位置が正しいと考える。
なぜなら四角形ABPCの面積は△ABP+△APCで、
これは周長としてAPを2回とBPとCPを含んでいるからである。
ABとACは一定だから、結局APを2回とBPとCPを含んでいる長さが
最も長いときが面積が最大になる。
いいかえれば四角形ABPCの面積が最大のとき、AP+BP+CPが最大になる。
294(1): イナ ◆/7jUdUKiSM [sage] 2020/02/24(月) 17:18:19.43 ID:st+AszZ0(4/5) AAS
前>>290
>>245
求める円の半径をxとおくと、AとBに外接しCに内接する円の中心をDとして、△DBAおよび△DBCにおいて余弦定理より、
cos∠DBA=[(b/2+x)^2+{(a+b)/2}^2-(a/2+x)^2]/{2(b/2+x)(a+b)/2}
={(b+2x)^2+(a+b)^2-(a+2x)^2}/2(b+2x)(a+b)
cos∠DBC=[(b/2+x)^2+(a/2)^2-{(a+b)/2-x}^2]/2(b/2+x)(a/2)
={(b+2x)^2+a^2-(a+b-2x)^2}/2(b+2x)a
cos∠DBA=cos∠DBCより、
(b^2+4bx+4x^2+a^2+2ab+b^2-a^2-4ax-4x^2)a=(b^2+4bx+4x^2+a^2-a^2-b^2-4x^2-2ab+2ax+2bx)(a+b)
(2b^2+4bx+2ab-4ax)a=(4bx-2ab+2ax+2bx)(a+b)
(2b^2+4bx+2ab-4ax)a=(4bx-2ab+2ax+2bx)a+(4bx-2ab+2ax+2bx)b
2ab^2+4abx+2a^2b-4a^2=4abx-2a^2b+2a^2x+2abx+4b^2x-2ab^2+2abx+2b^2x
2ab^2+2a^2b-4a^2+2a^2b+2ab^2=2a^2x+2abx+4b^2x+2abx+2b^2x
x=(2ab^2+2a^2b-4a^2+2a^2b+2ab^2)/(2a^2+2ab+4b^2+2ab+2b^2)
=(4ab^2+4a^2b-4a^2)/(2a^2+4ab+6b^2)
=(2ab^2+2a^2b-2a^2)/(a^2+2ab+3b^2)
=2a(b^2+ab-a)/(a^2+2ab+3b^2)
いまいちおっきいな。
手書きだとx=2ab/3(a+b)
携帯で検算すると変わった。
379(3): イナ ◆/7jUdUKiSM [sage] 2020/03/02(月) 23:39:49.43 ID:6RLywf+z(2/2) AAS
前>>378訂正。
>>371
余弦定理より、
cosA=(4^2+5^2-6^2)/2・4・5
=5/40
=1/8
sinA=√(64-1)/8
=3√7/8
2R=BC/sinA=BD
=6・8/3√7
=16/√7
△BEH∽△BDEより、
BE:BH=BD:BE
BH=BE^2/BD
=25√7/16
AからBDへの垂線の足をFとすると、
BF=AB^2/BD
=16√7/16
=√7
FH=BH-BF
=25√7/16-√7
=9√7/16
AF=√(AB^2-BF^2)
=√16-7
=√9
=3
AH=√(AF^2+FH^2)
=√(9+81・7/256)
=√9(256+63)/16
=3√319/16
=3.34885708……
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.042s