[過去ログ] 分からない問題はここに書いてね458 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
236: 132人目の素数さん [sage] 2020/02/23(日) 03:46:20.16 ID:OYpSuZ+S(1) AAS
あれ?
よみまちがったかな?
平方剰余の和=平均非剰余の和
を主張してるように読み間違えました。
すいません。
307: 132人目の素数さん [sage] 2020/02/25(火) 16:36:03.16 ID:KHilL9zo(1/3) AAS
nが偶数のときは
 n=2m (mは奇数、平方因子をもたない)
と表わせる。   >>291
このとき
 Σ[k=1,n-1] mod(k^2,n) = 2Σ(平方剰余) - (n/2),
また
 Σ(平方剰余) + Σ(非剰余) = 1+2+・・・・+(n-1) = n(n-1)/2,

・m=4q+1 の場合
 Σ(平方剰余) - Σ(非剰余) = m,
 Σ(平方剰余) = mm,
 Σ[k=1,n-1] mod(k^2,n) = n(n-1)/2,  (等号)

・m=4q+3 の場合
 Σ(平方剰余) - Σ(非剰余) = -m,
 Σ(平方剰余) = m(m-1),
 Σ[k=1,n-1] mod(k^2,n) = n(n-3)/2,  (不等号)
436
(1): 132人目の素数さん [sage] 2020/03/04(水) 23:16:24.16 ID:1qQJQ56S(1) AAS
>>435
> >>431
> 安倍がしきりに繰り返す  1〜2週間が山場という専門家の算出根拠は 何なんだろうな?

記者会見を決めた時点で、すべての発症者は補足されていて、
今後2週間以内で全ての感染者は明るみに出る、に違いないという
素人の素朴な期待。
442
(2): 132人目の素数さん [sage] 2020/03/05(木) 16:36:20.16 ID:0/hyyc4X(1) AAS
以前このスレで、下記の数列について
lim[n→∞] a[n]=2
であることをご教示いただきました。
a[n+1]=(√2)^a[n]
a[1]=√2

ところで
a[3]={(√2)^(√2)}^(√2)=2
となります。
a[n]は単調増加数列に見えるのですが、a[3]=a[∞]=2なのでどこかで減少しているのでしょうか?
対数をとってもグラフが書けず困っています。a[n]の増加減少について教えて下さい。
554
(1): イナ ◆/7jUdUKiSM [sage] 2020/03/09(月) 05:46:29.16 ID:otlyxJ1y(3/6) AAS
>>553
>>515
(2)後半
方程式C,Dよりyを消去した4次方程式x^4-2bx^2-x+b^2+c=0の解と係数の関係より、
2p+q-c=0──?
p^2+2pq-2pc-qc=-2b──?
-(p^2q-2pqc-p^2c)=-1──?
-p^2qc=b^2+c──?
?よりp^2+q(2p-c)-2pc+2b=0
?より2p-c=-q
代入しp^2-q^2-2pc+2b=0
p^2-q^2=2pc-2b
p-q=p-(c-2p)=3p-c
q-c=c-2p-c=-2p
q^2-b=q^2-p^2+p^2-b=2b-2pc+p^2-b=b-2pc+p^2
これらを代入し、
E=(2/3)(-2p)(c^2-4pc+4p^2-b)+(-2p)(b-p^2)+(1/3)(3p-c)(2b-2pc)-(1/3)(p-c)(b-p^2)
=(-4p/3)(c^2-4pc+4p^2-b)-2pb+2p^3+2p(b-pc)-(2c/3)(b-pc)-pb/3+bc/3+p^3/3-cp^2/3
=-4pc^2/3+16p^2c/3-16p^3/3+4pb/3-2pb+2p^3+2pb-2p^2c-2bc/3+2pc^2/3-pb/3+bc/3+p^3/3-cp^2/3
=-4pc^2/3+16p^2c/3-10p^3/3+pb-2p^2c-2bc/3+2pc^2/3+bc/3+p^3/3-p^2c/3
=-2pc^2/3+3p^2c-3p^3+pb-bc/3
?・c+?より、
-2pqc^2-p^2c^2=b^2+c+1
-2p(c-2p)c^2-p^2c^2=b^2+c+1
-2pc+4p^2c^2-p^2c^2=b^2+c+1
3p^2c^2-2pc-b^2-c-1=0
重解を持つから、
c^2+3(b^2+c+1)=0
p=c±√{c^2+3(b^2+c+1)}/3c^2
=1/3c
∴E=-2pc^2/3+3p^2c-3p^3+pb-bc/3
=-2(1/3c)c^2/3+3(1/3c)^2c-3(1/3c)^3+(1/3c)b-bc/3
=-2c^3/9+1/3c-1/9c^3+b/3c-bc/3
F=-c^3-7(1/3c)^3/3+4(1/3c)^2c/3+4(1/3c)b/3-8(1/3c)c/3+4(1/3c)b^2/3
=-c^3+4/27c+4b^2/9c+4b/9c-8/9-7/81c^3
717: 132人目の素数さん [sage] 2020/03/18(水) 19:47:03.16 ID:VrpVs/Q6(1) AAS
回帰分析ででてくる最尤推定は統計学の教科書にのっている最尤推定とは別物ですか?

統計学の本にのっている最尤推定は、確率分布や密度関数のパラメーター付された族を考え、真の分布から独立に得られた確率変数を用いて、尤度関数を最大化してパラメーターを推定するものだと思います。
しかし、例えば線形回帰だと、各xに対しyの値が正規分布に従っているとしても、それぞれ平均が違うので同一分布から独立に得られていません。
766: 132人目の素数さん [sage] 2020/03/21(土) 06:43:15.16 ID:4nSuI7cb(1) AAS
a,bは互いに素な自然数とする。

(1)a+biを極形式の形で表せ。iは虚数単位である。

(2)任意の自然数nに対して、(a+bi)^nは実数でないことを示せ。
857
(1): 132人目の素数さん [sage] 2020/03/22(日) 12:03:59.16 ID:exlHwI3N(1) AAS
級数Σ[n=1,2,...]1/(n^2+a)を計算することにより、(e^π-e^(-π))/(e^π+e^(-π))が無理数であることを証明せよ。
888
(1): 132人目の素数さん [] 2020/03/23(月) 19:51:38.16 ID:Lq4C2mrA(1) AAS
千葉逸人@HayatoChiba

珍しく(?)数学の質問をしたいのですが、文字数のため画像添付でお許しください。面白い話題だと思うのですが、何かご存知の方いますでしょうか。(ちょっと悔しいけど、でも教えてください・・・)
https://pbs.twimg.com/media/ETybe_oUMAAfIhq.jpg


https://twitter.com/HayatoChiba/status/1242039227069550592
https://twitter.com/5chan_nel (5ch newer account)
967
(1): 132人目の素数さん [sage] 2020/03/30(月) 05:06:32.16 ID:d9/xaTC4(2/6) AAS
>>965
信頼区間95%で計算していた。
99%の数値はこちら。

> d
男子割合 sample_size
1 0.025 6680
2 0.050 12805
3 0.075 18613
4 0.100 24087
5 0.125 29225
6 0.150 34035
7 0.175 38514
8 0.200 42660
9 0.225 46475
10 0.250 49959
11 0.275 53110
12 0.300 55930
13 0.325 58418
14 0.350 60574
15 0.375 62398
16 0.400 63891
17 0.425 65052
18 0.450 65882
19 0.475 66379
20 0.500 66545
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.070s