[過去ログ] 分からない問題はここに書いてね458 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
24: 132人目の素数さん [sage] 2020/02/10(月) 21:45:16.11 ID:AA8QHtQ9(3/4) AAS
>>23
(1) y=-2(x-pi/4)
(2) ∫[0,pi/4] (-2(x-pi/4) - cos(2x)) dx = (pi^2-8)/16
119: 132人目の素数さん [sage] 2020/02/17(月) 19:04:02.11 ID:e8jOHOIZ(2/2) AAS
>>110
円錐 x^2 = y^2 + z^2 を平面z=1 で切ると双曲線 x^2-y^2=1 になる。
切る平面(キャンバス)の傾きと母線の傾きの関係で楕円、双曲線、放物線のどれにもなる。
186
(3): 132人目の素数さん [sage] 2020/02/21(金) 18:00:26.11 ID:YlLJTAPA(4/5) AAS
>>169
トレミーの定理使って計算すると
最大値は2*sqrt(145)
PA=120/sqrt(145),PB=90/sqrt(145),PA=80/sqrt(145) のとき
219
(1): イナ ◆/7jUdUKiSM [sage] 2020/02/22(土) 14:56:12.11 ID:XhKI0L4t(2/2) AAS
>>206
17√2=24.0416306……>24
わずかに長い。
どんなときだ。
どんなときだ。
P(x,y),A(-1.4,4.8),B(-5,0),C(5,0)としてPA=√{(x+1.4)^2+(4.8-y)^2},PB=√{(x+5)^2+y^2},PC=√(5-x)^2+y^2},PA+PB+PC=√(25+2.8x+1.4^2-9.6y+4.8^2)+√(25+10x+25)+√(25-10x+25)=√(25+2.8x+1.96-9.6y+16・1.44)+√(50+10x)+√(50-10x)
=√(25+2.8x+1.96-9.6y+16+6.4+0.64)+√(50+10x)+√(50-10x)
=√(50+2.8x-9.6y)+√(50+10x)+√(50-10x)
=√{50+2.8x-9.6√(25-x^2}+√(50+10x)+√(50-10x)
{50+2.8x-9.6(25-x^2)^(1/2)}^(1/2)+(50+10x)^(1/2)+(50-10x)^(1/2)を微分し=0とするとxの値は、
431
(4): 132人目の素数さん [sage] 2020/03/04(水) 15:33:07.11 ID:G/OI1B6I(1) AAS
コロナ感染の場合
非感染者、感染しているが病状も他人への感染力なし、
感染しているが病状なし感染力あり、病状あり、重病化の5状態があります(分け方によるが)

この感染連鎖確率を調べるモデルはありますか
複数の内部状態があり、内部状態で連鎖に影響する
464
(1): 132人目の素数さん [] 2020/03/06(金) 14:46:10.11 ID:kLdlq8Gi(5/20) AAS
次に、

t + u + v = n

となるような 1 以上の整数の組 (t, u, v) の個数を求める。

その個数は、

(t + 1) + (u + 1) + (v + 1) = n

となるような 0 以上の整数の組 (t, u, v) の個数に等しい。

t + u + v = n - 3

となるような 0 以上の整数の組 (t, u, v) の個数は、

>>463

より、

(n - 2) * (n - 1) / 2 個である。
574
(1): 132人目の素数さん [] 2020/03/10(火) 17:37:08.11 ID:I2fj5FcK(1) AAS
これ分かる方いらしたらお願いします
>>549
878: 132人目の素数さん [sage] 2020/03/23(月) 04:05:11.11 ID:uvHIelYA(1/2) AAS
>>828
E(n) = (n+2)*(n+1)/(4*n+2)

> E(1:30)
[1] 1.0000 1.2000 1.4286 1.6667 1.9091 2.1538 2.4000 2.6471 2.8947 3.1429 3.3913
[12] 3.6400 3.8889 4.1379 4.3871 4.6364 4.8857 5.1351 5.3846 5.6341 5.8837 6.1333
[23] 6.3830 6.6327 6.8824 7.1321 7.3818 7.6316 7.8814 8.1311

>876のシミュレーションと近似している

pw=choose(2,2)/choose(n+2,2) # Pr[win]
pl=2*n/choose(n+2,2) # Pr[lose]
p=pw+pl
q=1-p # Pr[draw]
# 1*p + 2*q*p + 3*q^2*p + 4*q^3*p + i*q^(i-1)*p
# Σ[i=1,i=m] i*q^(i-1)*p
# p*Σi*q^(i-1)
# p*Σd(q^i)/dq
# p*d(Σq^i)/dq
# p*d((1-q^m)/(1-q))
# m→∞ q^m→0
# p*d/dq(1/(1 - q)) = p/(1 - q)^2 = 1/p
887
(1): 132人目の素数さん [sage] 2020/03/23(月) 19:49:00.11 ID:d4Un7xXa(1) AAS
>>880
どうでもいいことだが、
1*N + 2*(N-1) + ... +(N-1)*2 + N*1 = N(N+1)(N+2)/6
の別証明。

右辺は C(n+2,3) であるが、これを次のように考える。
1,2,3,4,…,n+2 のn+2個の数から3つ選ぶ選び方については
選んだ3つの数を左、真ん中、右と呼ぶことにすると、
真ん中に選ぶ数で場合分けできる。
真ん中が2となる選び方は、左1通り*右n通り。
真ん中が3となる選び方は、左2通り*右(n-1)通り。
真ん中が4となる選び方は、左3通り*右(n-2)通り。

真ん中がn+1となる選び方は、左n通り*右1通り。
978: 132人目の素数さん [sage] 2020/03/30(月) 12:03:10.11 ID:uxzDymBq(4/4) AAS
>>957
立花さん(党首)、丸山さん(衆、副党首)、浜田さん(参)
がんばれ
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.046s