[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む79 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
96(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/22(金) 21:14:50.59 ID:qSerb9O3(6/7) AAS
>>93
つづき
https://ja.wikipedia.org/wiki/%E5%BE%AE%E5%88%86%E5%BD%A2%E5%BC%8F
微分形式
(抜粋)
数学における微分形式(びぶんけいしき、英: differential form)とは、微分可能多様体上に定義される共変テンソル場である。
微分形式によって多様体上の局所的な座標の取り方によらない関数の微分が表現され、また多様体の内在的な構造のみによる積分は微分形式に対して定義される。
微分多様体上の微分形式は共変テンソルとしての座標変換性によって、あるいは接ベクトル空間上の線型形式の連続的な分布として定式化される。
また、代数幾何学・数論幾何学や非可換幾何学などさまざまな幾何学の分野でそれぞれ、この類推として得られる微分形式の概念が定式化されている。
概要
エリ・カルタンによって微分方程式を幾何学的に捕らえようとする試みから生まれた微分形式は、解析学や幾何学のいろいろな概念や公式を統一的な視点からまとめ、形式的な計算により多くの結果を得、多様体などの図形を調べるのにも非常に強力な道具になっていった。
n 次元ユークリッド空間において、座標が (x1,x2,…,xn) で与えられているとき、n 変数関数 f(x1,x2,…,xn) を微分 0 形式といい、 余接ベクトル場 f1 dx1 + f2 dx2 + … + fn dxn の事を 微分 1 形式という。
係数となっている fk は変数を省略してあるが関数である。これは関数の全微分で現れる式と同じである。2 次以上の微分形式は微分形式同士をテンソル積でかけ合わせることにより得られる。
(引用終り)
以上
105(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 07:53:31.43 ID:iKDSmfWl(7/31) AAS
>>96
>余接ベクトル場 f1 dx1 + f2 dx2 + … + fn dxn の事を 微分 1 形式という。
https://ja.wikipedia.org/wiki/%E6%8E%A5%E6%9D%9F
接束
(接ベクトル束から転送)
(抜粋)
微分幾何学において、可微分多様体 M の接束(せっそく、英: tangent bundle, 接バンドル、タンジェントバンドル) は M の接空間の非交和[注釈 1]である。つまり、
{\displaystyle TM:=\bigsqcup _{x\in M}T_{x}M=\bigcup _{x\in M}(\{x\}\times T_{x}M)=\bigcup _{x\in M}\{(x,v)\mid v\in T_{x}M\}.}{\displaystyle TM:=\bigsqcup _{x\in M}T_{x}M=\bigcup _{x\in M}(\{x\}\times T_{x}M)=\bigcup _{x\in M}\{(x,v)\mid v\in T_{x}M\}.}
ただし TxM は M の点 x における接空間を表す。なので、TM の元は対 (x, v)、ただし x は M の点で v は M の x における接ベクトル、と考えることができる。π(x, v) = x で定義される自然な射影
{\displaystyle \pi :TM\twoheadrightarrow M}
が存在する。この射影は各接空間 TxM を一点 x に写像する。
接束には(下のセクションで記述される)自然な位相が入る。この位相によって、多様体の接束はベクトル束(ファイバーがベクトル空間であるファイバー束)の典型的な例である。
TM の断面は M 上のベクトル場であり、TM の双対束は余接束で、M の余接空間の非交和である。定義により、多様体 M が平行化可能(英語版) (parallelizable) であることと接束が自明であることは同値である。
定義により、多様体 M が 枠付き(英語版) であることと接束 TM が stably trivial、すなわちある自明束 E に対しホイットニー和 (Whitney sum) TM ? E が自明であることは同値である。
例えば、n 次元球面 Sn はすべての n に対して枠付きであるが、(Bott-Milnor と Kervaire の結果によって)n = 1, 3, 7 に対してのみ平行化可能である。
役割
接束の主な役割の1つは滑らかな関数の微分の定義域と終域を提供することである。すなわち、M と N を滑らかな多様体として、f: M → N が滑らかな写像であれば、その微分(英語版) は滑らかな写像 Df: TM → TN である。
位相と滑らかな構造
接束には自然な位相(非交和位相ではない)が入り、それ自身多様体になる。TM の次元は M の次元の 2 倍である[注釈 2]。
つづく
152(2): 132人目の素数さん [sage] 2019/11/25(月) 18:06:59.71 ID:5k7RI9yy(1/2) AAS
おっちゃんです。
>>96
微分形式のことは書かれていない。まあ、一応解析の本なんで。
>>99
バナッハ空間における微分は、その存在性を示さなくても定義可能。
実数体R上のユークリッドノルムが入った有限次元のバナッハ空間 R^n で、偏微分や全微分が実質的に定義されている。
実数体R上のユークリッドノルムが入った有限次元のバナッハ空間 R^n での
一変数微積分や多変数微積分は、関数解析を使わずに理論展開出来る。
大体、絶対値の記号 |…| をユークリッドノルム ||…|| の記号で置き換えればいい。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.042s