[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む79 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
99(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 00:07:32.61 ID:iKDSmfWl(1/31) AAS
>>91 追加
おっちゃんな
>>83
>>何れにしろ、実数直線Rの連結性と ε-N は必須。
>
>必須・・
>ではないでしょ
必須。そうしないと、バナッハ空間においてノルムを用いる微分も出来ない。
(引用終り)
? イプシロンデルタ論法は、確かに証明の手法としての優秀さは認めるとしても
微分の概念は、イプシロンデルタ論法とは、別でしょ?w(^^
現実に、いままで見た文献(上記および下記)では、バナッハ空間の微分でイプシロンデルタ論法使ってないぞw(^^;
http://nalab.mind.meiji.ac.jp/~mk/labo/text/fundamental.pdf
Banach 空間における微積分の基本定理
桂田 祐史
2004 年 4 月 28 日
(抜粋)
4.2 Banach 空間に値を持つ関数の場合
次の命題とその証明は Temam [6] にある2。
https://www.seijo.ac.jp/pdf/faeco/kenkyu/086/086-sekimoto.pdf
Banach空間における微分 関本年彦 著 成城大学
https://www.math.nagoya-u.ac.jp/~yamagami/teaching/functional/hilbert2012.pdf
関数解析入門
山上 滋
2015 年 5 月 31 日
(抜粋)
目次
1 道の糧など 2
2 バナッハ空間 7
100(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 06:55:39.29 ID:iKDSmfWl(2/31) AAS
>>99 追加
https://ja.wikipedia.org/wiki/%E3%83%90%E3%83%8A%E3%83%83%E3%83%8F%E7%A9%BA%E9%96%93
バナッハ空間
(抜粋)
バナッハ空間(バナッハくうかん、英: Banach space; バナハ空間)は、完備なノルム空間、即ちノルム付けられた線型空間であって、そのノルムが定める距離構造が完備であるものを言う。
解析学に現れる多くの無限次元函数空間、例えば連続函数の空間(コンパクトハウスドルフ空間上の連続写像の空間)、 Lp-空間と呼ばれるルベーグ可積分函数の空間、ハーディ空間と呼ばれる正則函数の空間などはバナッハ空間を成す。これらはもっとも広く用いられる位相線型空間であり、これらの位相はノルムから規定されるものになっている。
バナッハ空間の名称は、この概念をハーンとヘリーらと共に1920-1922年に導入したポーランドの数学者ステファン・バナフに因む[1]。
定義
バナッハ空間の厳密な定義[2]は、
ノルム空間 V がバナッハ空間であるとは、V 内の各コーシー列 vn}∞
n=1 に対して V の適当な元 v を選べば
lim _n→∞ v_n = v
とすることができるときに言う。
バナッハ空間のうち一般によく知られる二種類は、その台となる線型空間の係数体(基礎体)K が実数体 R または複素数体 C であるもので、それぞれ実バナッハ空間および複素バナッハ空間と呼ばれる。
https://ja.wikipedia.org/wiki/%E3%83%90%E3%83%8A%E3%83%83%E3%83%8F%E7%A9%BA%E9%96%93%E3%81%AE%E4%B8%80%E8%A6%A7
バナッハ空間の一覧
(抜粋)
数学の函数解析学の分野において、バナッハ空間(バナッハくうかん、英: Banach spaces)は最も重要な研究対象の一つである。その他の解析学の分野においても、実際に現れる空間の多くはバナッハ空間である。
目次
1 古典バナッハ空間
2 その他の解析の分野におけるバナッハ空間
3 反例を与えるバナッハ空間
つづく
101(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 06:56:00.99 ID:iKDSmfWl(3/31) AAS
>>100
つづき
https://math-note.xyz/analysis/functional-analysis/nonclosed-subspace/https://math-note.xyz/analysis/functional-analysis/nonclosed-subspace/
数学ノート
2018.06.20
バナッハ空間とヒルベルト空間の完備でない部分空間の例
(抜粋)
完備なノルム空間をBanach(バナッハ)空間といい,完備な内積空間をHilbert(ヒルベルト)空間という.
Banach空間(Hilbert空間)はもとより線型空間なので,線型空間としての部分空間を考えることができる.この部分空間に元の空間と同じノルム(内積)を与えたものはノルム空間(内積空間)となるが,完備性を持つとは限らない.
すなわち,Banach空間の部分空間が同じノルムでBanach空間になるとは限らないし,Hilbert空間の部分空間が同じ内積でHilbert空間になるとは限らない.
本稿では,Hilbert空間の部分ノルム空間で完備でないものの例を考える.その際,以下の事実に注意する.
一般に,Banach空間,Hilbert空間の部分空間が同じノルムで完備であるためには,部分空間が閉であることが必要十分である.したがって,Banach空間,Hilbert空間の閉でない部分ノルム空間は完備でない.
つづく
102(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 06:56:46.85 ID:iKDSmfWl(4/31) AAS
>>101
つづき
https://eman-physics.net/quantum/hilbert.html
EMANの物理学・量子力学・ヒルベルト空間
ヒルベルト空間
知らなくてもいいのだが、知らないと恥ずかしい。
(抜粋)
内積空間・ノルム空間
さらにベクトルとベクトルの間に内積という演算が定義できるとしよう。ここで高校で学ぶ内積を思い浮かべるかも知れないが、まぁそのイメージでいいだろう。数学的には幾何学でやった内積と同じものをその計算式だけで定義してやって、これを内積とする、という回りくどい定義の仕方をする。それが出来る空間を「内積空間」あるいは「プレ・ヒルベルト空間」と呼ぶ。
内積が定義できると、直交とか、ノルムとかいう概念が定義できるようになる。
例えば2つのベクトルの内積が0になる時を直交という。これは幾何学のイメージからそう呼んでいるだけだ。
そして、ノルムというのはベクトルの自分自身との内積の平方根を取ったものである。すなわち、ベクトルの長さのようなものだ。
ではなぜわざわざ「ノルム」と呼んで「ベクトルの長さ」と言わないのかというと、数学では全てを抽象的な概念でまとめて扱う。この手続きがいつも私たちが知っている「長さ」を意味するとは限らないのである。
ところで先ほど、「内積が定義できるとノルムが定義できる」と書いたが、実は内積が定義できなくてもノルムの定義自体は出来てしまう。ここでは定義は書かないが、そういう空間を「ノルム空間」と呼ぶ。
つづく
103(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 06:57:04.18 ID:iKDSmfWl(5/31) AAS
>>102
つづき
完備性
さて「ヒルベルト空間」はまだなのかと待っていることと思うが、ここまでの話にもう一つ条件を加えるだけでいい。
内積空間が完備性を持つとき、「ヒルベルト空間」という。
ノルム空間が完備性を持つとき、「バナッハ空間」という。
バナッハ空間については今回の話とは関係ないが、まぁ、数学ではこんな具合に分類されて名前が付いているんだよ、という雰囲気をつかめるように書いておいた。
な。物理学者は「ヒルベルト空間」なんて言葉でカッコつけなくてもいいんだよ。他の数学的空間の性質と区別する必要があるときにだけ使えばいいんだからさ。
で、気になっていることと思うが、「完備性」とは何だろうか。
コーシー列が収束する時、完備性を持つのだそうだ。ではコーシー列とは何かと言えば、集合から好きな要素を取り出して並べた時に、あるところより先の要素を見ると必ず、それらの要素間の距離がどんな狭い範囲にでも収まってしまう、そんなところが必ずある、という並びのことらしい。ああ!数学ってのは七面倒くさい!!!とにかく、どこまでも狭い範囲に収まって行くような並びのことだ。
それで、狭い範囲に収まって行くのなら収束していると言えるのではないか、というと、そういう意味ではない。例えば √2 に限りなく近付くコーシー列があったとしても、この空間内に √2 という無理数が定義されていなければ √2 に収束するとは言えないわけだ。
数学的な表現はやめて、分かりやすく言い直そう。これはベクトルが連続であることを定義しているのである。この性質は微分などを定義するためには是非とも必要なものだ。そして、それはもっと分かりやすく言えば、このベクトルの要素は実数か複素数の範囲でなければならないという意味である。初めからそう言えよ、って?私もそう思う。
つづく
104: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 06:57:21.13 ID:iKDSmfWl(6/31) AAS
>>103
つづき
こんなもんなんだよ
なんだ、それだけか?結局、ぶっちゃけて言えば、「取り敢えずの計算に困らないベクトル空間」というくらいの意味だったということだ。実に他愛のない話だ。だからこそ一度知ってしまうと今度は逆に、これくらいは知ってないと恥ずかしいと思えてしまうわけで。
まあ、奥は深いのだが、これだけ知ってるだけでもしばらくは困らない。さあ、立場の弱い友達の所へ行って知ったかぶりをするのだ!(笑
ま、この程度のものは黙ってた方が恥かかなくて済むかとも思うのだが、・・・判断はお任せしよう。
波動関数がどうして無限次元複素ヒルベルト空間内のベクトルなのかを説明しないのかって?それは本文中できっちりやるつもりだ。取り敢えず、こういう本質ではない部分は脇へよけておきたかったのである。
(引用終り)
以上
105(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 07:53:31.43 ID:iKDSmfWl(7/31) AAS
>>96
>余接ベクトル場 f1 dx1 + f2 dx2 + … + fn dxn の事を 微分 1 形式という。
https://ja.wikipedia.org/wiki/%E6%8E%A5%E6%9D%9F
接束
(接ベクトル束から転送)
(抜粋)
微分幾何学において、可微分多様体 M の接束(せっそく、英: tangent bundle, 接バンドル、タンジェントバンドル) は M の接空間の非交和[注釈 1]である。つまり、
{\displaystyle TM:=\bigsqcup _{x\in M}T_{x}M=\bigcup _{x\in M}(\{x\}\times T_{x}M)=\bigcup _{x\in M}\{(x,v)\mid v\in T_{x}M\}.}{\displaystyle TM:=\bigsqcup _{x\in M}T_{x}M=\bigcup _{x\in M}(\{x\}\times T_{x}M)=\bigcup _{x\in M}\{(x,v)\mid v\in T_{x}M\}.}
ただし TxM は M の点 x における接空間を表す。なので、TM の元は対 (x, v)、ただし x は M の点で v は M の x における接ベクトル、と考えることができる。π(x, v) = x で定義される自然な射影
{\displaystyle \pi :TM\twoheadrightarrow M}
が存在する。この射影は各接空間 TxM を一点 x に写像する。
接束には(下のセクションで記述される)自然な位相が入る。この位相によって、多様体の接束はベクトル束(ファイバーがベクトル空間であるファイバー束)の典型的な例である。
TM の断面は M 上のベクトル場であり、TM の双対束は余接束で、M の余接空間の非交和である。定義により、多様体 M が平行化可能(英語版) (parallelizable) であることと接束が自明であることは同値である。
定義により、多様体 M が 枠付き(英語版) であることと接束 TM が stably trivial、すなわちある自明束 E に対しホイットニー和 (Whitney sum) TM ? E が自明であることは同値である。
例えば、n 次元球面 Sn はすべての n に対して枠付きであるが、(Bott-Milnor と Kervaire の結果によって)n = 1, 3, 7 に対してのみ平行化可能である。
役割
接束の主な役割の1つは滑らかな関数の微分の定義域と終域を提供することである。すなわち、M と N を滑らかな多様体として、f: M → N が滑らかな写像であれば、その微分(英語版) は滑らかな写像 Df: TM → TN である。
位相と滑らかな構造
接束には自然な位相(非交和位相ではない)が入り、それ自身多様体になる。TM の次元は M の次元の 2 倍である[注釈 2]。
つづく
106(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 07:54:03.92 ID:iKDSmfWl(8/31) AAS
>>105
つづき
例
最も簡単な例は Rn の例である。この場合接束は自明である。
別の簡単な例は単位円 S1 である(上の絵を見よ)。円の接束も自明であり S1 × R に同型である。幾何学的には、これは高さ無限の円柱である。
容易に視覚化できる接束は実数直線 R と単位円 S1 の接束だけであり、これらはどちらも自明である。2 次元多様体に対して接束は 4 次元でありしたがって視覚化するのは難しい。
非自明な接束の簡単な例は単位球面 S2 の接束である。この接束はつむじ頭の定理(英語版)によって非自明である。したがって、球面は parallelizable でない。
https://ja.wikipedia.org/wiki/%E4%BD%99%E6%8E%A5%E6%9D%9F
余接束
(抜粋)
微分幾何学において、滑らかな多様体の余接束 (cotangent bundle) は多様体のすべての点におけるすべての余接空間からなるベクトル束である。それはまた接束の双対束として記述することもできる。
目次
1 余接層
1.1 余接層の定義
1.2 多様体における反変性
2 相空間としての余接束
2.1 自然 1-形式
2.2 斜交形式
2.3 相空間
つづく
107(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 07:54:41.37 ID:iKDSmfWl(9/31) AAS
>>106
つづき
余接層
余接束の滑らかな断面は微分 1-形式である。
余接層の定義
M を滑らかな多様体とし M × M を M の自身とのカルテジアン積とする。対角写像 Δ は M の点 p を M × M の点 (p, p) に送る。Δ の像は対角線 (diagonal) と呼ばれる。{\displaystyle {\mathcal {I}}}{\mathcal {I}} を対角線上消える M × M 上の滑らかな関数の芽の層とする。
このとき商層 {\displaystyle {\mathcal {I}}/{\mathcal {I}}^{2}}{\mathcal {I}}/{\mathcal {I}}^{2} はより高次の項を法として対角線上消える関数の同値類からなる。余接層はこの層の M への引き戻し(英語版)である。
\Gamma T^{*}M=\Delta ^{*}({\mathcal {I}}/{\mathcal {I}}^{2}).
テイラーの定理によって、これは M の滑らかな関数の芽の層に関して加群の局所自由層である。したがってそれは M 上のベクトル束、余接束 (cotangent bundle) を定義する。
相空間
多様体 M が力学系における可能な位置の集合を表していれば、余接束 T*M を可能な位置と運動量の集合と考えることができる。例えば、これは振り子の相空間を記述する方法である。
振り子の状態は、その位置(角度)と、その運動量(あるいは同じことだが、その速度、なぜならばその質量は変わらないから)によって決定される。全状態空間はシリンダーのように見える。
シリンダーは円の余接束である。上のシンプレクティックな構成は、適切なエネルギー関数と一緒に、系の物理の完全な決定を与える。より多くの情報はハミルトン力学を、動きのハミルトニアン方程式の明示的な構成は en:geodesic flow の記事を参照。
(引用終り)
以上
110(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 10:48:25.04 ID:iKDSmfWl(10/31) AAS
まあな
だが、いまどきの現代数学で
全領域を同じ深さで理解している人はいない
というか、全領域を同じ深さで理解している人は、
真の天才以外、
数学者としては使い物にならないだろう
おれは、数学の外野席なんで
べつに、一知半解で十分なんだ
エクセル組んだり、プログラムを走らせたりとかね
あと、出てきた結果が正しいかどうかの判断な(これ大事)
完全に理解する前に
Mathematica使えよ
Python使えよ
Gap使えよ
完全に理解していて、ソフト使えない、それは数学大物なら可だ(弟子にやらせれば良いから)
完全に理解していないが、ソフトには乗せて使えるやつは、可だ(自分で結果出せる。その内完全な理解に到達する)
もちろん、完全に理解していて、ソフト使えるのが理想だがな
111: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 11:05:17.02 ID:iKDSmfWl(11/31) AAS
http://www.jssac.org/Editor/Suushiki/V18/No2/V18N2_128.pdf
Mathematica v8 の紹介 - 数式処理学会 中村英史 著 数式処理 Bulletin of JSSAC(2012) Vol. 18, No. 2, pp. 127 - 137
112(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 11:27:10.63 ID:iKDSmfWl(12/31) AAS
>>107
>多様体 M が力学系における可能な位置の集合を表していれば、余接束 T*M を可能な位置と運動量の集合と考えることができる。
(参考)
https://ja.wikipedia.org/wiki/%E3%82%B7%E3%83%B3%E3%83%97%E3%83%AC%E3%82%AF%E3%83%86%E3%82%A3%E3%83%83%E3%82%AF%E5%B9%BE%E4%BD%95%E5%AD%A6
シンプレクティック幾何学
シンプレクティック幾何学(シンプレクティックきかがく、英: symplectic geometry)とは、シンプレクティック多様体上で展開される幾何学をいう。シンプレクティック幾何学は解析力学を起源とするが、現在では大域解析学の一分野でもあり、可積分系・非可換幾何学・代数幾何学などとも深い繋がりを持つ。また、弦理論や超対称性との関わりも盛んに研究がなされている。
目次
1 解析力学とシンプレクティック幾何
2 対称性と可積分系
2.1 定理(ラグランジュ形式)
2.2 定理(ハミルトン形式)
3 量子力学との関わり
4 幾何学的量子化と非可換幾何学
5 シンプレクティックトポロジーへ
6 アーノルド予想とフレアーホモロジー
7 シンプレクティック幾何学に関わる数学者
解析力学とシンプレクティック幾何
シンプレクティック幾何学の歴史は、ハミルトンに始まる。ニュートンから始まる力学は、オイラー、ラグランジュによって変分法をもとにした解析力学へと洗練されていった。すなわち、ニュートンの運動方程式
{\displaystyle m{\ddot {x_{i}}}=F_{i}}m{\ddot {x_{i}}}=F_{i}
からオイラー=ラグランジュ方程式
{\displaystyle {\frac {d}{dt}}\left({\frac {\partial L}{\partial {\dot {q_{i}}}}}\right)-{\frac {\partial L}{\partial q_{i}}}=0}{\frac {d}{dt}}\left({\frac {\partial L}{\partial {\dot {q_{i}}}}}\right)-{\frac {\partial L}{\partial q_{i}}}=0
への移行である。
つづく
113(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 11:27:44.28 ID:iKDSmfWl(13/31) AAS
つづき
オイラー・ラグランジュ方程式は、数学的には位置座標を変数とする配位空間の接バンドル上の方程式である。それに対して、ハミルトンによる力学の定式化、すなわち、ハミルトン形式は、運動方程式を配位空間の余接バンドル上の方程式
{\displaystyle {\dot {q_{i}}}={\frac {\partial H}{\partial p_{i}}},\,\,\,\,\,{\dot {p_{i}}}=-{\frac {\partial H}{\partial q_{i}}}}{\dot {q_{i}}}={\frac {\partial H}{\partial p_{i}}},\,\,\,\,\,{\dot {p_{i}}}=-{\frac {\partial H}{\partial q_{i}}}
と見ることであった。この余接バンドルは位置座標と運動量を変数とする空間である。余接バンドルを物理学では、相空間と呼ぶこともある。速度は位置座標を微分して得られるものであるから、位置座標と速度を用いるラグランジュ方程式は二階の常微分方程式となっている。
それに対して、ハミルトン形式では運動量自体を変数として用いるため、方程式は一階の常微分方程式となっている。ここで、速度と運動量は区別されなくてはならないことに注意する。なぜなら、一般化座標を取り替えたときに、一般化速度と一般化運動量の変換則はそれぞれ異なるからである。
一般化速度の変換則は接ベクトルの変換則と同じであり、一般化運動量の変換則は余接ベクトルの変換則と同じである。
量子力学との関わり
20世紀初頭になると、シンプレクティック幾何学は更なる転機を迎える。量子力学の誕生である。ハイゼンベルクやシュレディンガーらによって、量子力学は始まるが、そこにおいてもシンプレクティック幾何は重要であった。ハイゼンベルクの行列力学はポアソン括弧から出発し、シュレディンガーの波動力学はハミルトン・ヤコビ方程式から出発するからである。
その後、量子化の方法はいくつも提案されている。いくつか挙げるとすれば、
・正準量子化
・ファインマンの経路積分法による量子化
・ネルソンによる確率力学
である。
つづく
114: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 11:28:08.72 ID:iKDSmfWl(14/31) AAS
>>113
つづき
幾何学的量子化と非可換幾何学
幾何学的量子化の問題は多様体上の量子力学の構成という問題から始まったのであるが、空間の量子化を考える非可換幾何学とも深い関わりを持つ。非可換幾何の原点は次の事実であった:
シンプレクティックトポロジーへ
シンプレクティック幾何の歴史は物理とともに始まり進展していったが、そしてシンプレクティック幾何は大域的幾何としての発展を期待されていた。
特にグロモフ以降のシンプレクティック幾何学は、大域解析学の大きな柱へと成長を遂げることになる。グロモフは論文[1]のなかで概正則曲線の概念を定義し、その論文がエポックメイキングとなりそれ以降シンプレクティック幾何学は大域的トポロジーの一分野(シンプレクティックトポロジー)に躍り出ることとなる。これを深谷賢治は、『普通の大域シンプレクティック幾何学』[2]になった、と述べている。
グロモフは次の定理を示した。
アーノルド予想とフレアーホモロジー
シンプレクティック幾何学に関わる数学者
ウラジーミル・アーノルド (V. I. Arnold)
ミハイル・グロモフ (Mikhael L. Gromov)
ウィリアム・ローワン・ハミルトン (William R. Hamilton)
深谷賢治
アンドレアス・フレアー (Andreas Floer)
小野薫
(引用終り)
以上
115(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 11:41:59.52 ID:iKDSmfWl(15/31) AAS
>>112
https://www.math.kyoto-u.ac.jp/insei/
MATHEMATICS GRADUATE STUDENT NETWORK
このページでは、 数学に携わる大学院生の間でネットワークをつくり、 数学の研究活動に役立てて頂くとともに、 大学院生による運営委員会が主催する新人セミナーの案内を行うことを 目的としています。
https://www.math.kyoto-u.ac.jp/insei/?KINOSAKI%20SEMINAR%202004/proceeding
第1回城崎新人セミナー報告集 2004
入谷寛 京都大学 シンプレクティック幾何入門
https://www.math.kyoto-u.ac.jp/insei/?plugin=attach&pcmd=open&file=iritani.pdf&refer=KINOSAKI%20SEMINAR%202004%2Fattach
シンプレクティック幾何入門 入谷 寛 京都大学大学院理学研究科 2004
(抜粋)
本稿は城崎新人セミナーでの講演「シンプレクティック幾何入門」をまとめたもので
ある。講演ではアーノルド予想の理解を目標とし、周期ハミルトン系やフレア (量子)
コホモロジーについて簡単な解説を行った。したがって、シンプレクティック幾何入門
という目標にははるかに到達していない。さらに、筆者はハミルトン系やアーノルド
予想については素人であるため、間違いが多いと思われる。多くの指摘を頂ければ幸
いである。
1 シンプレクティック幾何学の起こり
シンプレクティック幾何学は、元々はニュートン力学を数学的に記述する枠組みとし
て生まれた。それが、オイラーやラグランジュ、ハミルトンらの発展させた解析力学
である。この節では解析力学からシンプレクティック幾何学への流れを簡単に説明す
る。解析力学のよい入門書は例えば [Onu] である。
この微分方程式系は、2 次元空間 (q, p) 内に関数 H(q, p)の定めるベクトル場があり、そ
の積分曲線を求めていると解釈できる。以下では、関数 H(q, p)の物理的な意味は忘れ
ることにし、任意の関数 H(p, q)に対して、微分方程式 (1) を考えることにする。この
ような形に書き表される系のことをハミルトン系と呼ぶ。
つづく
116: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 11:42:20.78 ID:iKDSmfWl(16/31) AAS
>>115
つづき
局所的なシンプレクティック幾何の最初の課題は、上のハミルトン系をより幾何学的
な言葉で言い換えることである。ここで、幾何学的な言葉とは、座標を用いない記述の
ことを意味する。上の方程式系 (1)は pと q に関して対称性を持った美しい形をしてい
るが、座標 p, qが陽にあらわれているため、座標に依存した定式化であり幾何学的では
ない。座標に依存しない定式化のための鍵となるのは、次の作用原理である。
3 量子コホモロジー
この節では Floerコホモロジーに積構造を入れて環にした量子コホモロジーについて
説明する。量子コホモロジーについての参考文献としては、McDuff-Salamonによる教
科書 [MS] や Manin の教科書 [Man] などが挙げられる。Guestによる丁寧な解説 [Gue]
や、(古典的) ミラー対称性について詳しい Cox-Katz の教科書 [CK] もある。
最後に、旗多様体の量子コホモロジーについて説明し、それが戸田格子とよばれる可
積分系と関わることを述べる。まず、旗多様体 Fl(n)とは次のようなシンプレクティッ
ク多様体である。
(引用終り)
以上
117(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 11:47:18.52 ID:iKDSmfWl(17/31) AAS
>>115
>それが、オイラーやラグランジュ、ハミルトンらの発展させた解析力学
解析力学は、大学で講義があったな(^^;
https://ja.wikipedia.org/wiki/%E8%A7%A3%E6%9E%90%E5%8A%9B%E5%AD%A6
解析力学
(抜粋)
これはつまり、作用 L から一元的に運動方程式を導出する方法で、一部の力学の問題について計算を簡単にする方法だった[10]。
幾何光学における変分原理であるフェルマーの原理からの類推で、古典力学において最小作用の原理(モーペルテューイの原理)が発見された。これにより、力学系の問題は、作用積分とよばれる量を最小にするような軌道をもとめる数学の問題になった。
座標を一般化座標に拡張し、ラグランジュ方程式が導き出された[11]。 さらに、ラグランジアンから一般化運動量を定め、座標と運動量のルジャンドル変換によって、ハミルトン力学が導かれた[12][13]。
118: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 11:51:03.33 ID:iKDSmfWl(18/31) AAS
>>117
<参考追加>
https://eman-physics.net/analytic/what_ana.html
EMANの物理学・解析力学・解析力学とは何か
解析力学とは何か?
私は物事の抽象化が嫌いである。形式を重んじる余り、何か本質から離れていっているような気がするからである。私には解析力学はまさにそういう作業をやっているように思えるのだが、本当に本質から離れていっているかどうかは分からない。
解析力学は力学体系の構造そのものを学ぶ学問であり、ひょっとして理論の構造そのものが宇宙の本質を表している可能性だって否定できないのだ。
解析力学は、通常のニュートン力学の内容をより一般的に、より美しく表現できないかということを追求した学問であると言える。我々は最も単純な座標系として
(x,y,z)を使ったデカルト座標を使うことが多く、ニュートンの運動方程式や電磁気学のマクスウェルの方程式などはこの座標系を基礎にして書かれている。
これらの方程式は極座標
(r,θ,Φ)などの他の座標系に変換してやるとその形式が全く変わってしまうのだが、もしこれがどんな座標系を使った場合にも同じ形式で表せる方法があるとしたらそれはとても便利で美しいとは思わないだろうか。
いや、便利であるか美しいかどうかは見てみないと分からないが、もしそういう形式があるならそれがどんなものかちょっと見てみたい気はするだろう。
解析力学は複雑な力学の問題をなるべく簡単に解けるようにするための方法論であるとも言えて、
ラグランジアンを導入。
↓
ルジャンドル変換と言う数学テクニックでハミルトン形式に変形。
↓
正準変換で解き易い形に変形。
↓
楽に解けました。めでたしめでたし。
という流れの計算テクニックを体系化したものだと思えばよい。こう考えておけば解析力学の全体像を掴み易いのではないだろうか?
119: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 13:36:36.39 ID:iKDSmfWl(19/31) AAS
>>110
21世紀の現代社会
全てを一人で知ろうとしても、無理ゲーじゃね?
工学ってのは、その道のプロからすれば、一知半解かもしらんが
しかし、会社の中では、ある部分は自分の担当だが
他の部分は、他の人の担当で、その人が数学が専門だったり、物理が専門だったり、化学が専門だったりするわけ
そういう人とも、会話し言っていることが理解できないといけない
あと、全体を纏めるリーダーも必要で
細かいことを全部知っている必要はない
が、全体は理解していないといけない
そういうことって、世の中沢山ある
無職の数学落ちこぼれには分からない
数学で成功しているひとは、多分いろんな世界と繋がりができて分かると思う
120(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 13:50:06.81 ID:iKDSmfWl(20/31) AAS
>>64
>それとは関係なく、IUTが全く新しいパラダイムという表現は2019年には相応しくないなw
>望月さんは遠アーベル幾何学的な代数寄りのアプローチをしたのが当時新しかったわけで
>最早そういう所に最先端の数学は洗練して近づける域にあるからね
なるほど
例えば >>57 のKirti Joshi氏 (Univ. Arizona, USA),
下記だが
https://educ.titech.ac.jp/math/event_information/2018/055590.html
東工大 数論・幾何学セミナー: Kirti Joshi 氏
2018年4月20日(金)
講演タイトル
On Chern class inequalities for surfaces in positive characteristic
アブストラクト
I will explain my proof of the inequality $c_1^2\leq 5c_2$ for a class of smooth, projective surfaces over algebraically closed fields of characteristic $p>0$. My approach is based on a study of slopes of Frobenius morphism on crystalline cohomology of $X$ and of the de Rham-Witt complex of $X$. In particular my methods do not require any lifting hypothesis.
つづく
121(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 13:52:55.17 ID:iKDSmfWl(21/31) AAS
>>120
つづき
下記論文を、 27 Aug 2019に投稿しているね
(this is also inspired by Mochizuki's results)などと記されている
https://arxiv.org/abs/1906.06840
Mochizuki's anabelian variation of ring structures and formal groups
Kirti Joshi
(last revised 27 Aug 2019 (this version, v2))
(抜粋)
I show that there is a universal formal group (over a suitable (non-zero) ring) which is equipped with an action of the multiplicative monoid O? of non-zero elements of the ring of integers of a p-adic field.
Lubin-Tate formal groups also arise from this universal formal group.
If two p-adic fields have isomorphic multiplicative monoids O? then the additive structure of one arises from that of the other by means of this universal formal group law (in a suitable manner).
In particular if two p-adic fields have isomorphic absolute Galois groups then it is well-known that the two respective monoids O? are isomorphic and so this construction can be applied to such p-adic fields.
In this sense this universal formal group law provides a single additive structure which binds together p-adic fields whose absolute Galois groups are isomorphic
(this anabelian variation of ring structure is studied and used extensively by Shinichi Mochizuki).
In particular one obtains a universal (additive) expression for any non-zero p-adic integer (in a given p-adic field) which is independent of the ring structure of the p-adic field (this is also inspired by Mochizuki's results).
These ideas extend to geometric situations: for a smooth curve X/K there is a universal K(X)?-formal group (here K(X)? is the monoid of non-zero meromorphic functions on a smooth curve X/K over a p-adic field K, which binds together all the additive structures on K(X)?∪{0} compatibly with the universal additive structure on K?∪{0}
and hence a non-zero meromorphic function on X is given by a universal additive expression which is independent of the ring structure of K(X)?∪{0}
124(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 18:28:50.78 ID:iKDSmfWl(22/31) AAS
>>64
>そもそもホッジ理論とアラケロフ理論ってのは元々解析的な観点では離れた理論ではないんであって、
>望月さんは遠アーベル幾何学的な代数寄りのアプローチをしたのが当時新しかったわけで
ふーん、なるほどね〜(^^
https://ja.wikipedia.org/wiki/%E3%83%9B%E3%83%83%E3%82%B8%E3%83%BB%E3%82%A2%E3%83%A9%E3%82%B1%E3%83%AD%E3%83%95%E7%90%86%E8%AB%96
ホッジ・アラケロフ理論
(抜粋)
楕円曲線のホッジ・アラケロフ理論は、アラケロフ理論(英語版)(Arakelov theory)のフレームワークで考える p-進ホッジ理論(英語版)(p-adic Hodge thory)の楕円曲線についての類似理論である。ホッジ・アラケロフ理論は、 Mochizuki (1999) で導入された。
望月の主要な結果であるホッジ・アラケロフ理論の比較定理は、(大まかには)標数 0 の滑らかな楕円曲線の普遍拡大上の次数が d 未満の多項式の空間は、自然に d-捩れ点上の函数の d2-次元空間に(制限によって)同型となるという定理である。
ド・ラームコホモロジーを複素多様体の特異コホモロジーや、p-進多様体のエタール・コホモロジーに関連付けるコホモロジー論の比較定理のアラケロフ理論の類似物である。
Mochizuki (1999) と Mochizuki (2002a)で、彼は数論的小平・スペンサー写像やガウス・マーニン接続(英語版)(Gauss-Manin connection)が、ヴォイタ予想やABC予想などに重要なヒントを与えるのではないかと指摘している。
125(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 20:26:11.24 ID:iKDSmfWl(23/31) AAS
>>121
>Mochizuki's anabelian variation
追加
https://mathsoc.jp/section/algebra/
日本数学会 代数学分科会 ホームページ
https://mathsoc.jp/section/algebra/algsymp_past/algsymp04.html
第 49 回代数学シンポジウムのご案内 2004
8月3日(火)9 : 30 -- 10 : 30 玉川 安騎男 (京都大学・数理解析研究所)
代数曲線の数論的基本群に関する Grothendieck 予想,その後 報告集原稿(pdf)
https://mathsoc.jp/section/algebra/algsymp_past/algsymp04_files/tamagawa.pdf
代数曲線の数論的基本群に関する Grothendieck 予想,その後 2004
玉川 安騎男 京都大学数理解析研究所
(抜粋)
§1. 第1部の復習
今回の講演は, 第41回代数学シンポジウム (1996年7月, 於山形市遊学館) でさ
せていただいたサーベイ講演「代数曲線の数論的基本群に関する Grothendieck 予想」
の続きで, ほんとうは, タイトルを「代数曲線の数論的基本群に関する Grothendieck
予想,II」とした方がよいところでした. この節では, 前回の講演内容を簡単に復習
したいと思います. 詳しくは [T1] をご参照下さい.
1.1. 数論的基本群
Grothendieck が [SGA1] で理論を展開したエタール基本群とは, 次のような関手
を与えるものです:
π1 : ((基点付き) 連結スキーム) → (副有限群)
連結性を仮定すると, 基点の取り方によらず (内部自己同型のずれを除いて標準的に)
基本群が定まるので, 以下基点のことは忘れることにします.
4. [k : Qp] < ∞ に対する絶対版.
1.3 で復習した通り, この場合の相対版は望月氏によって非常に強い形で解決され
ていますが, 絶対版は, p 進局所体の絶対 Galois 群の非幾何的自己同型の存在により,
成否が不明になっています. これに関しては, 望月氏の最近の研究 [M4][M5][M6][M7]
があります. 筆者は, 比較的安直に絶対版の成立を信じているのですが, 望月さんは,
近年の彼の Diophantus 幾何 (abc 予想など) への全く新しい圏論的アプローチなど
をへて, どちらかというと不成立なのではないかと感じているようです.
126(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 20:34:10.32 ID:iKDSmfWl(24/31) AAS
>>125
>筆者は, 比較的安直に絶対版の成立を信じているのですが, 望月さんは,
>近年の彼の Diophantus 幾何 (abc 予想など) への全く新しい圏論的アプローチなど
>をへて, どちらかというと不成立なのではないかと感じているようです.
上記が2004年のことなんだ(^^;
http://www.kurims.kyoto-u.ac.jp/~motizuki/thoughts-japanese.html
望月新一の感想・着想
(抜粋)
2009年02月11日
・IUTeichの論文を昨年の7月から執筆しているが、最近の進捗状況について
報告する。まず、2008-03-25の報告(過去と現在の研究を参照)では、
この理論を二篇の論文に分けて書く予定であると書いたが、この半年
余りの間、(論文一篇の長さが100ページを大幅に超過しないように)
理論を三篇の論文に分割して書くことに方針を変更した。現時点で
考えている題名は次の通りである:
IUTeich I: Construction of Hodge Theaters
IUTeich II: Hodge-Arakelov-theoretic Evaluation
IUTeich III: Canonical Splittings
このうち、IUTeich I は(イントロを除いて)一通り書き終わっていて、
IUTeich IIを書き始めているところである。これまでのペースで作業が
進めば、(2008-03-25の報告で予定した通り)2010年末までに一通り
書き終わる見通しであるが、もちろんこれについては現時点では何も
保障できない。
IUTeich I では、
(a) Frobenioid I, IIの理論
の他、
(b) Etale Thetaの理論
や
(c) Absolute Topics IIIの理論
の、非自明ながら比較的表面的な部分を、本質的な形で利用したが、
IUTeich II では、(b)の最も深い部分を使う予定である。一方、
IUTeich III では、(c)の最も深い部分を適用する予定である。
つづく
127: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 20:34:33.98 ID:iKDSmfWl(25/31) AAS
>>126
つづき
2006年06月24日
・pro-(p,l)のabs pGCに関する補足:05月17日の時点ではまだ出来て
いなかった部分(=Green自明化に関係する部分)があったが、これは無事
解決できたと思う。ただし、この「pro-(p,l)のabs pGCが出来た」という
話は全部「点論的」(=「Cuspidalization」の論文の「point-theore-
tic」)という仮定の下での話。一方、「点論性」については、学生の
星氏との共同研究によってそう遠くないうちにできそうだ。すると、現在
の認識では、「p進遠アーベル幾何のもっとも重要な未解決問題」は、
pro-pのabs pGCかな。これまで出来ていることを考慮すると、この問題は、
pro-p abs的な設定において曲線のspecial fiberの(閉点や既約成分の)
幾何を復元することと事実上同値である。
・双曲的曲線の配置空間の遠アーベル幾何に関する玉川さんとの共同研究は
順調に進んでいて、そう遠くないうちに論文も公表できそうだ。
2006年05月17日
・pro-(p,l)のabs pGC (p進局所体上の絶対グロタンディーク予想)
が出来そうな気がしてきた(まだ完全にチェックしたわけではないが)。
これを受けて、「pro-p Green 自明化がこのようなabs pGCの設定で
保たれる」ことを示すことが、p進遠アーベル幾何のもっとも重要な
未解決問題であると改めて認識させられた。(Green自明化については、
「Cuspidalization」の論文を参照。)
(引用終り)
以上
128(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 20:47:12.83 ID:iKDSmfWl(26/31) AAS
いわずもがなだが
コピペすると、この板の特性で、特殊文字が文字化け(だいたい”?”に化ける)とか
d2-次元空間の2が、実は指数でd^2-次元空間だとか、化ける
なので、興味があるひとは、必ずリンク先を訪問して確認するようにな
(数学落ちこぼれは、誤解しているらしいがw(^^; )
129(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 21:08:38.26 ID:iKDSmfWl(27/31) AAS
突然ですが、蒸し返し
「あいみょん」なんて、三ヶ月前くらいは知らなかったんだ(^^;
現代数学の系譜 工学物理雑談 古典ガロア理論も読む78
2chスレ:math
https://www.youtube.com/watch?v=M8VvZLWoFBc
一首好聽的日語歌??《君はロックを聴かない 》あいみょん(Love Music 2017) 現場版(中文字幕)
9,726,113 回視聴?2018/07/15
関連
https://toyokeizai.net/articles/-/285173
東洋経済 スージー鈴木の「月間エンタメ大賞」
「あいみょん」がここまで支持される音楽的必然
カギはパンチラインと「令和歌謡」のツンデレ スージー鈴木 : 評論家 2019/06/07 5:20
(抜粋)
プロモーションツアーで台湾を訪れたあいみょん。2018年5月15日(写真:時事通信社)
正直、この連載で取り上げるには遅すぎたと思っている。昨年、若者を中心に人気が爆発し、年末のNHK『紅白歌合戦』にも出場、幅広い層にその名をとどろかせた24歳の女性シンガー=あいみょん。
今年に入っても、その人気はまったく衰えていない。6月10日付「Billboard JAPAN HOT100」において、あいみょんは40位以上に、何と5曲も送り込んでいる。
5位:『マリーゴールド』
12位:『ハルノヒ』
18位:『君はロックを聴かない』
24位:『今夜このまま』
32位:『愛を伝えたいだとか』
驚くべきはこの内、今年のリリース楽曲は『ハルノヒ』だけで、『マリーゴールド』『今夜このまま』は昨年、『君はロックを聴かない』『愛を伝えたいだとか』に至っては一昨年のリリースだということである。
切っ先鋭い「あいみょんパンチライン」
ブレイクへの要因として、真っ先に浮かぶのが、あいみょんの作詞能力だ。切っ先鋭いコトバづかいが実に印象的なのである。
「パンチライン」という音楽用語がある。主にラップのリリック(歌詞)の中における「決めフレーズ」を意味する言葉なのだが、あいみょんの歌詞には「あいみょんパンチライン」とでも名付けたくなるような切っ先鋭いコトバが、そこかしこに埋め込まれているのだ。
あいみょんサウンドの「人懐っこさ」
あいみょんの「人懐っこさ」は歌謡曲的
130: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 21:56:27.87 ID:iKDSmfWl(28/31) AAS
Kiran Sridhara Kedlaya先生のホームページ下記
IUTからみで、前半2回のworkshopは
リストアップされている
しかし、後半2回のworkshopは、リストにないね(^^;
3)
Invitation to inter-universal Teichmuller Theory (IUT)
RIMS workshop, September 1 - 4 2020
4)
Inter-universal Teichmuller Theory (IUT) Summit 2020
RIMS workshop, September 8 - 11 2020
https://kskedlaya.org/
Kiran Sridhara Kedlaya
(抜粋)
Professor of Mathematics
Stefan E. Warschawski Chair in Mathematics
Department of Mathematics, Room 7202
University of California, San Diego
https://kskedlaya.org/confs.cgi
Conferences in arithmetic geometry
2020
・Foundations and Perspectives of Anabelian Geometry, May 18-22, Kyoto, Japan
・Combinatorial Anabelian Geometry and Related Topics, June 29-July 3, Kyoto, Japan
131: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 22:01:07.08 ID:iKDSmfWl(29/31) AAS
>>56
>Jakob Stix (Frankfurt Univ., Germany),
Stix先生も、4回のworkshop中、
前半2回の内なら、IUTは冠されていないということかな(^^;
132: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 22:09:17.89 ID:iKDSmfWl(30/31) AAS
3.12式の前までは、認めようということかもな(^^;
133: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 22:10:16.94 ID:iKDSmfWl(31/31) AAS
果たして果たして(^^
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.056s