[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む79 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
185(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/28(木) 07:59:47.92 ID:QdpmOFrx(1/7) AAS
Inter-universal geometry と ABC予想 42
2chスレ:math
449 名前:132人目の素数さん[sage] 投稿日:2019/11/26(火) 06:18:49.75 ID:LyHP70fx [1/3]
(抜粋)
ただ、コア的記述による入れ子構造、
(引用終り)
”入れ子構造”は、下記の”お話”だと思うが
普通、”再帰”(下記)というのでは?
http://www.kurims.kyoto-u.ac.jp/~motizuki/research-japanese.html
望月新一 過去と現在の研究
http://www.kurims.kyoto-u.ac.jp/~motizuki/sokkuri-hausu-link-japanese.pdf
IUTeichって何?
「そっくりアニメ」
による解説
(抜粋)
「IUTeich」(=宇宙際 Teichm¨uller 理論)の出発点は、
入れ子になっている宇宙の列
というイメージにある。このようなイメージは、古代に遡るものと思われ、本稿で取
り上げる「そっくりハウス」のアニメをはじめ、世界各地の様々な物語・神話に登場
するものである。IUTeich の場合、それぞれの宇宙は、
「通常の環論・スキーム論が有効な古典的数論幾何的舞台一式」
に対応する。
https://ja.wikipedia.org/wiki/%E5%86%8D%E5%B8%B0
再帰
(抜粋)
再帰(さいき)は、あるものについて記述する際に、記述しているものそれ自身への参照が、その記述中にあらわれることをいう。定義において、再帰があらわれているものを再帰的定義という。自己相似の記事も参照のこと。
主に英語のrecursionとその派生語の訳にあてられる。他にrecurrenceの訳(回帰#物理学及び再帰性を参照のこと)や、reflexiveの訳[1]として「再帰」が使われることがある。数学的帰納法との原理的な共通性から、recursionの訳として数学では「帰納」を使うことがある。
関連項目
数学
数学的帰納法
再帰理論
帰納的集合
帰納的可算集合
帰納言語
帰納的可算言語
帰納的関数
原始再帰関数
漸化式
高階関数
つづく
186(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/28(木) 08:00:10.10 ID:QdpmOFrx(2/7) AAS
>>185
つづき
https://dic.nicovideo.jp/a/%E5%86%8D%E5%B8%B0
ニコニコ大百科
再帰単語
(抜粋)
再帰とは、 ある対象xの定義の中にxが登場するような物を言う。
→ 再帰
数学における再帰
以下のようなフィボナッチ数列の定義は再帰的な定義と言える。
a1 = a2 = 1
an+2 = an+1 + an
再帰的でない定義(一般解)は以下のような形になる。
an = 1/√5 × [ {(1+√5)/2}n - {(1-√5)/2}n ]
この例から分かるように、再帰的定義を用いると、そうでない定義よりも直感的な定義をすることが可能になる場合がある。
再帰的解法
再帰的な手法を使い、問題を解く手順である。有名なものにハノイの塔がある。
つづく
187(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/28(木) 08:01:03.09 ID:QdpmOFrx(3/7) AAS
>>186
つづき
なお、関連
http://www.kurims.kyoto-u.ac.jp/~motizuki/Kako%20to%20genzai%20no%20kenkyu.pdf
過去と現在の研究の報告 (2008-03-25 現在) (フォント埋め込み版)
(引用終り)
以上
197: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/28(木) 23:10:56.96 ID:QdpmOFrx(4/7) AAS
>>196
おめでとうございます
凄いですね(^^
198(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/28(木) 23:48:43.22 ID:QdpmOFrx(5/7) AAS
メモ貼る
https://www.youtube.com/watch?v=Rz5g-plyuAg
Peter Scholze - The geometric Satake equivalence in mixed characteristic
7,685 回視聴?2017/04/13
Institut des Hautes Etudes Scientifiques (IHES)
チャンネル登録者数 2.91万人
Seminaire Paris Pekin Tokyo / MArdi 11 avril 2017
In order to apply V. Lafforgue's ideas to the study of representations of p-adic groups, one needs a version of the geometric Satake equivalence in that setting.
For the affine Grassmannian defined using the Witt vectors, this has been proven by Zhu.
However, one actually needs a version for the affine Grassmannian defined using Fontaine's ring B_dR, and related results on the Beilinson-Drinfeld Grassmannian over a self-product of Spa Q_p.
These objects exist as diamonds, and in particular one can make sense of the fusion product in this situation; this is a priori surprising, as it entails colliding two distinct points of Spec Z.
The focus of the talk will be on the geometry of the fusion product, and an analogue of the technically crucial ULA (Universally Locally Acyclic) condition that works in this non-algebraic setting.
199: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/28(木) 23:52:37.94 ID:QdpmOFrx(6/7) AAS
>>198
>Satake equivalence
Satakeは、下記だろうね
https://ja.wikipedia.org/wiki/%E4%BD%90%E6%AD%A6%E4%B8%80%E9%83%8E
佐武一郎
(抜粋)
佐武 一郎(さたけ いちろう、1927年 - 2014年10月10日)は、日本の数学者。山口県出身。
カリフォルニア大学バークレー校名誉教授。東北大学名誉教授。理学博士。
専門は微分幾何学、代数群。佐武同型(英語版)(Satake isomorphism)、志村多様体の佐武コンパクト化、ディンキン図形の一般化である佐武図形(英語版)(Satake diagram)などで知られる。
著書の『線型代数学』は線型代数学の入門書として有名であり[1]、現在でも広く読まれている。
略歴
1927年 - 山口県に生まれる
1950年 - 東京大学理学部数学科卒業
1959年 - 東京大学 理学博士 論文の題は「The Gauss-Bonnet theorem for 5-manifolds (5多様体についてのガウス-ボネットの定理) 」[2]。
1962〜63年 - 東京大学教授
1963〜68年 - シカゴ大学教授
1968〜83年 - カリフォルニア大学バークレー校教授
1980〜91年 - 東北大学教授
1991〜98年 - 中央大学理工学部数学科教授
200(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/28(木) 23:58:19.75 ID:QdpmOFrx(7/7) AAS
>>198
>Satake equivalence
下記かな〜?(^^;
”The geometric Satake equivalence is a geometric version of the Satake isomorphism, proved by Ivan Mirkovi? and Kari Vilonen (2007).”
”which is a fortiori an equivalence of tannakian categories (Ginzburg 2000).”
https://en.wikipedia.org/wiki/Satake_isomorphism
Satake isomorphism
(抜粋)
Jump to navigationJump to search
In mathematics, the Satake isomorphism, introduced by Ichir? Satake (1963), identifies the Hecke algebra of a reductive group over a local field with a ring of invariants of the Weyl group.
The geometric Satake equivalence is a geometric version of the Satake isomorphism, proved by Ivan Mirkovi? and Kari Vilonen (2007).
Statement
Classical Satake isomorphism Let {\displaystyle G}G be a semisimple algebraic group, {\displaystyle K}K be a non-Archimedean local field and {\displaystyle O}O be its ring of integers. It's easy to see that {\displaystyle Gr=G(K)/G(O)}{\displaystyle Gr=G(K)/G(O)} is grassmannian.
Then, the geometric Satake isomorphism is
{\displaystyle K(Perv(Gr))\otimes _{\mathbb {Z} }\mathbb {C} \quad {\xrightarrow {\sim }}\quad K(Rep({}^{L}G))\otimes _{\mathbb {Z} }\mathbb {C} }{\displaystyle K(Perv(Gr))\otimes _{\mathbb {Z} }\mathbb {C} \quad {\xrightarrow {\sim }}\quad K(Rep({}^{L}G))\otimes _{\mathbb {Z} }\mathbb {C} },
which can be obviously simplified to
{\displaystyle Perv(Gr)\quad {\xrightarrow {\sim }}\quad Rep({}^{L}G)}{\displaystyle Perv(Gr)\quad {\xrightarrow {\sim }}\quad Rep({}^{L}G)},
which is a fortiori an equivalence of tannakian categories (Ginzburg 2000).
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 2.703s*