[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む79 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
417(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/15(日) 00:02:25.78 ID:BvQtIPz4(1/25) AAS
>>415
>でも、教授クラスになると、IUT論文(500ページ)なんて読む時間取れるのか? って疑問でしょ(^^
>加藤文元先生は、焼き肉からのつき合いだから、読んでいるかな?
SSのペーパーくらい、10ページだから、教授クラスだとしても、当然読んでいるんでしょうね
で、田口雄一郎(東京工業大学)、栗原将人(慶応義塾大学)、志甫淳(東京大学)のお歴々は(>>302)
IUTに乗ったってことでしょ
まあ、2020年のいまごろには、もう少しはっきりしているでしょうね
418(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/15(日) 00:12:03.58 ID:BvQtIPz4(2/25) AAS
>>416
人間なにが良いかだけど
人格円満で、数学の業績も高い
そういう人が理想だとしても
一方で欠点の無い人はいないという
アインシュタインも離婚・再婚したというしね
https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%83%BB%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3
アルベルト・アインシュタイン
新たな恋、家族との別居、離婚、再婚
ベルリンに移住して数か月後、アインシュタインが再従姉のエルザに対して恋愛感情を抱いている、ということが妻のミレーバに知られ、その発覚から数か月後に妻ミレーバは長男・次男とともにチューリッヒへと引っ越す事態となり、別居状態となった。
親友のフリッツ・ハーバーの仲裁も空しく、別居生活が5年ほど続き、1919年2月に正式に離婚の手続きが完了(そこに至るまでに、仲たがいし離婚に至る夫婦にありがちな、誰もがうんざりとさせられるような男女のやりとり、
つまり、互いの問題点をあげつらう非難合戦や、慰謝料や養育費の請求やそれの拒否、調停の場での疑心暗鬼の駆け引きなどがあったらしいが)。
アインシュタインは当時、ミレーバに対してそれなりの額を払うような金銭的な余裕はなかったため、「ノーベル賞を取ってその賞金をミレーバに譲る」と未来に関する、相手から見て魅力的な条件を提示することで、ともかくも離婚を成立させた
(当時、アインシュタインの業績から考えるに、ノーベル賞を受賞することはほぼ確定的とみなされていたため、それを相手へのオファーとして提示することができ、相手もそれを受け入れた)。
離婚が成立した数ヵ月後の1919年の6月、アルベルトはエルザと再婚した。
そして離婚成立の2年後、招待され日本へと渡航中にノーベル賞受賞の決定が通知された。つまり同賞受賞は、人々が理解・想像していたような学問上の名誉の観点だけでなく、
ノーベル賞の賞金を受け取りそれを元妻に渡すことで、元妻との離婚の一連の騒動が完全に片づけられ、落ち着かない日々がようやく終わる、という観点からもアインシュタインにとっては喜ばしいものであったのである。
419: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/15(日) 08:00:31.69 ID:BvQtIPz4(3/25) AAS
>>418
>一方で欠点の無い人はいないという
人間のつき合いとして
相手の欠点ばかり見ていては、つき合えない
欠点の無い人はいないから
欠点を見ないように、長所を見るように
という考えがあるよ
420(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/15(日) 09:21:23.42 ID:BvQtIPz4(4/25) AAS
>>417
>SSのペーパーくらい、10ページだから、教授クラスだとしても、当然読んでいるんでしょうね
>で、田口雄一郎(東京工業大学)、栗原将人(慶応義塾大学)、志甫淳(東京大学)のお歴々は(>>302)
>IUTに乗ったってことでしょ
来年5月のワークショップでさ
田口雄一郎(東京工業大学)、栗原将人(慶応義塾大学)、志甫淳(東京大学)らのお歴々は、顔を出す
多分
で、だれか、質問してよ
「3人に質問します。SSのペーパー読んだでしょ? 泥舟じゃないですか、IUT! それでもIUTに乗ったんですか? 各人個別に回答願います」
って、爆弾発言してよw
それを、動画で取って、Youtubeにアップしてくれんかな〜
返答の仕方で、どこまで本気か本気度が分かるから(^^;
421(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/15(日) 09:49:20.86 ID:BvQtIPz4(5/25) AAS
>>407 追加
https://www.nippyo.co.jp/shop/magazine/8170.html
数学セミナー 2019年12月号
* ∞圏/圏論を超えて……阿部知行 43
「極端に複雑になっている現代数学において感覚的な理解はきわめて重要であり、
∞圏を使うことにより直観的かつ構造が分りやすい証明ができることが多々あるのである。」
って、あってね
”感覚的な理解はきわめて重要”
”直観的かつ構造が分りやすい証明”
のキーワードに惹かれたしだいです
422: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/15(日) 12:18:30.41 ID:BvQtIPz4(6/25) AAS
日経サイエンス 特集:AI 人工知能から人工知性へ
なかなか興味深い
http://www.nikkei-science.com/page/magazine/202001.html
日経サイエンス 2020年1月号
特集:AI 人工知能から人工知性へ
http://www.nikkei-science.com/wp-content/uploads/2019/11/202001cover.jpg
コンピューター科学
特集:AI 人工知能から人工知性へ
画像認識や読解力のテストでは人間を凌ぐようになったAIだが,一方で学習は遅く,人間なら決してしないような誤解もする。AIはどこまで人間の知性に迫っているのだろうか。
想像力を手に入れたAI 知性獲得につながる3つの方法 G. マッサー
科学がAIで変わる 吉川和輝
科学の方法論に革新 語り:岡田真人/ 聞き手:吉川和輝
騙されるAI 瀧 雅人
http://www.nikkei-science.com/wp-content/uploads/2019/11/202001digest.pdf
記事ダイジェスト
423(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/15(日) 12:45:01.22 ID:BvQtIPz4(7/25) AAS
>>420 補足
http://www.kurims.kyoto-u.ac.jp/~motizuki/research-japanese.html
過去と現在の研究 望月新一
http://www.kurims.kyoto-u.ac.jp/~motizuki/IUTch-discussions-2018-03.html
2018年3月、数理研で行なわれたIUTeichに関する議論の関連文書
http://www.kurims.kyoto-u.ac.jp/~motizuki/Rpt2018.pdf
2018年3月、数理研で行なわれたIUTeichに関する議論を纏めた報告書
REPORT ON DISCUSSIONS, HELD DURING THE
PERIOD MARCH 15 ? 20, 2018, CONCERNING
INTER-UNIVERSAL TEICHMULLER THEORY (IUTCH) ¨
Shinichi Mochizuki
February 2019
P1
§1. The present document is a report on discussions held during the period March
15 ? 20, 2018, concerning inter-universal Teichm¨uller theory (IUTch). These
discussions were held in a seminar room on the fifth floor of Maskawa Hall, Kyoto
University, according to the following schedule:
・ March 15 (Thurs.): 2PM ? between 5PM and 6PM,
・ March 16 (Fri.): 10AM ? between 5PM and 6PM,
・ March 17 (Sat.): 10AM ? between 5PM and 6PM,
・ March 19 (Mon.): 10AM ? between 5PM and 6PM,
・ March 20 (Tues.): 10AM ? between 5PM and 6PM.
つづく
424(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/15(日) 12:45:48.93 ID:BvQtIPz4(8/25) AAS
>>423
つづき
P41
§17. The fundamental misunderstandings of IUTch discussed in the present report may be summarized as a failure to understand the following central aspects of IUTch:
P42
§18. In the context of the present report, it is important to recall that
(Vrf1) IUTch has been checked, verified, read and reread, and orally exposed in detail in seminars in its entirety countless times since the release of preprints on IUTch in August 2012 by a collection of mathematicians (not
including myself) involved in this line of research.
(For instance, Fesenko estimates, in the most recent updated version of §3.1 of his survey [Fsk],that IUTch has been verified at least 30 times.)
This collection of mathematicians has (together with me) also been actively involved in detailed discussions and dialogues with mathematicians who have any questions concerning IUTch.
P43
Indeed, at numerous points in the March discussions, I was often tempted to issue a response of the following form to various assertions of SS (but typically refrained from doing so!):
Yes! Yes! Of course, I completely agree that the theory that you are discussing is completely absurd and meaningless, but that theory is completely different from IUTch!
つづく
425(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/15(日) 12:46:11.50 ID:BvQtIPz4(9/25) AAS
>>424
つづき
P44
Nevertheless, the March discussions were productive in the sense that they yielded a valuable first glimpse at the mathematical content of the misunderstandings that underlie criticism of IUTch (cf. the discussion of §3).
In the present report, we considered various possible causes for these misunderstandings, namely:
(PCM1) lack of sufficient time to reflect deeply on the mathematics under discussion (cf. the discussion in the final portions of §2, §10);
(PCM2) communication issues and related procedural irregularities (cf.(T6), (T7), (T8));
(PCM3) a deep sense of discomfort, or unfamiliarity, with new ways of thinking about familiar mathematical objects (cf. the discussion of §16; [Rpt2014], (T2); [Fsk], §3.3).
On the other hand, the March discussions were, unfortunately, by no means sufficient to yield a complete elucidation of the logical structure of the causes underlying the misunderstandings summarized in §17.
(引用終り)
囲繞
426: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/15(日) 12:47:15.99 ID:BvQtIPz4(10/25) AAS
>>423
まあ、望月新一先生の言い分は
「SSは、全然分かってない」ということらしい
427: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/15(日) 13:09:31.45 ID:BvQtIPz4(11/25) AAS
>>425
<Google訳>
それでも、3月の議論は、IUTchの批判の根底にある誤解の数学的内容を最初に垣間見せるという意味で生産的でした(§3の議論を参照)。
本報告書では、これらの誤解のさまざまな考えられる原因、すなわち、
(PCM1)議論中の数学に深く反省するのに十分な時間がない(§2、§10の最後の部分の議論を参照);
(PCM2)通信の問題と関連する手続きの不規則性(cf.(T6)、(T7)、(T8));
(PCM3)馴染みのある数学的なオブジェクトについての新しい考え方の新しい不快感、またはなじみのなさ(§16; [Rpt2014]、(T2); [Fsk]、§3.3)の議論を参照)。
一方、残念ながら、3月の議論は、§17に要約されている誤解の根底にある原因の論理構造を完全に解明するのに十分な手段ではありませんでした。
(引用終り)
まあ、
田口雄一郎(東京工業大学)、栗原将人(慶応義塾大学)、志甫淳(東京大学)のお歴々は(>>302)
望月新一先生の言い分に乗っているのでしょうね
428(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/15(日) 13:28:04.10 ID:BvQtIPz4(12/25) AAS
https://researchmap.jp/7000008634
researchmap
星 裕一郎
(抜粋)
論文
テキストで表示
宇宙際 Teichmuller 理論入門
星 裕一郎
RIMS Kokyuroku Bessatsu B76 79-183 2019年 [査読有り]
Mono-anabelian reconstruction of number fields
星 裕一郎
RIMS Kokyuroku Bessatsu B76 1-77 2019年 [査読有り]
A note on dormant opers of rank p-1 in characteristic p
星 裕一郎
Nagoya Mathematical Journal 235 115-126 2019年 [査読有り]
On the supersingular divisors of nilpotent admissible indigenous bundles
星 裕一郎
Kodai Mathematical Journal 42(1) 1-47 2019年 [査読有り]
A pro-l version of the congruence subgroup problem for mapping class groups of genus one
星 裕一郎; 飯島 優
Journal of Algebra 520 1-31 2019年 [査読有り]
続 ? 宇宙際 Teichmuller 理論入門
星 裕一郎
RIMS Kokyuroku Bessatsu B72 209-309 2018年 [査読有り]
429: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/15(日) 13:31:14.47 ID:BvQtIPz4(13/25) AAS
>>428
http://www.kurims.kyoto-u.ac.jp/~motizuki/students-japanese.html
望月新一 学生・受験生諸君へ
(抜粋)
望月研究室の大学院生
星 裕一郎 (ほし ゆういちろう)
略歴:
2004年03月 東京工業大学 理学部 数学科 卒業
2004年04月 京都大学大学院 理学研究科 修士課程 数学・数理解析専攻 入学
2006年03月 京都大学大学院 理学研究科 修士課程 数学・数理解析専攻 修了
修士論文:
Fundamental groups of log configuration spaces and the cuspidalization problem
PDF
2006年04月 京都大学大学院 理学研究科 博士課程 数学・数理解析専攻 進学
2006年04月〜2007年03月 日本学術振興会 特別研究員(DC1)
2007年04月 京都大学 数理解析研究所 基礎数理研究部門 助教
2009年07月 京都大学 数理解析研究所 博士学位 (論文博士) 取得
学位論文:
Absolute anabelian cuspidalizations of configuration spaces of proper hyperbolic
curves over finite fields PDF
2011年12月 京都大学 数理解析研究所 無限解析研究部門 講師
2011年12月 2011年度井上研究奨励賞受賞
2017年12月 京都大学 数理解析研究所 無限解析研究部門 准教授
430(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/15(日) 14:10:38.76 ID:BvQtIPz4(14/25) AAS
メモ
Gくんのサーベイは出版されず
Hくんのは3つ出版された
http://www.kurims.kyoto-u.ac.jp/~gokun/
http://www.kurims.kyoto-u.ac.jp/~gokun/DOCUMENTS/abc2019Jul5.pdf
RIMS K?oky?uroku Bessatsu Bx (201x), 000?000
A proof of the abc conjecture after Mochizuki. preprint. last updated on 8/July/2019.
on the footnote
(* FAQ on Inter-universal Teichmuller Theory)
Abstract
We give a survey of S. Mochizuki’s ingenious inter-universal Teichm¨uller theory and explain how it gives rise to Diophantine inequalities. The exposition was designed to be as
self-contained as possible.
https://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/244678
B76 On the examination and further development of inter-universal Teichmuller theory
Mono-anabelian Reconstruction of Number Fields (On the examination and further development of inter-universal Teichmuller theory)
Hoshi, Yuichiro (2019-08)
数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu, B76: 1-77
宇宙際Teichmuller理論入門(On the examination and further development of inter-universal Teichmuller theory)
星, 裕一郎 (2019-08)
数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu, B76: 79-183
https://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/244674
B72 Algebraic Number Theory and Related Topics 2015
続・宇宙際Teichmuller理論入門 (Algebraic Number Theory and Related Topics 2015)
星, 裕一郎 (2018-12)
数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu, B72: 209-307
431(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/15(日) 19:28:07.41 ID:BvQtIPz4(15/25) AAS
メモ
http://taro-nishino.blogspot.com/2019/12/blog-post077.html
TARO-NISHINOの日記
数論の賢人
12月 12, 2019
(抜粋)
Quanta Magazine誌に始めてショルツ博士が登場した"The Oracle of Arithmetic"を今回紹介します。勿論、もっと以前から数学界では有名な人でしたが、一般大衆を読者層とするオンライン科学ジャーナルにおいては始めての登場だったのではないかと思います。
これを最初に読んだ時の私の率直な感想を書くと、ショルツ博士はあの若さで数学的業績も圧倒的なら、あの若さで人柄も素晴らしいと思いました。後日フィールズ賞等を受賞し、世界を引っ張るリーダと呼ばれるのは当然のことなのかも知れません。
以下にその私訳を載せておきます。
数論の賢人
2016年06月28日 Erica Klarreich
28歳でピーター・ショルツは数論と幾何学の間の深い繋がりを明らかにしつつある。
2010年、びっくりさせる噂が数論コミュニティに行き渡り、Jared Weinsteinに届いた。どうやら、ボン大学の或る学生が数論における一つの不可解な証明に捧げられた288ペィジの本"Harris-Taylor"
[訳注: 2001年01月にプリストン大学出版部から出版された、Michael HarrisとRichard Taylor共著の有名な本The Geometry and Cohomology of Some Simple Shimura Varietiesのこと]
をたった37ペィジに再構成する論文を書いたようだ。22歳の学生ピーター・ショルツは証明の最も複雑な部分の一つ(それは数論と幾何学の間の広範囲にわたる繋がりを扱っている)を回避する方法を発見していた。
"そんなに若い誰かがとても革命的なことを成し遂げていたことは本当にすごかった。非常に屈辱的だった"と現在はボストン大学にいる34歳の数論学者Weinsteinは言った。
つづく
432: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/15(日) 19:28:28.46 ID:BvQtIPz4(16/25) AAS
>>431
つづき
ボン大学(ボン大学はたった2年後にショルツを常勤教授にした)の数学者達は既に彼の異常なる数学的頭脳に気づいていた。彼のHarris-Taylor論文の投稿後、数論と幾何学のエクスパート達もショルツに注目し始めた。
その時から、現在28歳のショルツはより広大な数学コミュニティにおいて高位に昇って来ている。賞の顕彰の言葉は彼のことを"既に世界で最も影響力のある数学者の一人である"、"数十年ごとにしか出現しない稀なる才能だ"と呼んでいる。
彼は数学における最も栄誉あるものの一つであるフィールズ賞の最有力候補だ
[訳注: 皆さんもご存じだと思いますが、
2018年にリーオゥで開催された国際数学者会議においてショルツ博士はフィールズ賞を受賞しました。
これほど予想が簡単だった候補者も珍しいと思います]
と言われている。
(引用終り)
以上
433(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/15(日) 19:43:57.21 ID:BvQtIPz4(17/25) AAS
メモ
http://taro-nishino.blogspot.com/2019/07/blog-post075.html
TARO-NISHINOの日記 フィールズ賞受賞者ピーター・ショルツへのインタヴュー 7月 25, 2019
(抜粋)
今回紹介するのはピーター・ショルツ博士への最新のインタヴュー記事"Interview with Fields Medalist Peter Scholze"(PDF)です。これはEMS Newsletterの6月号に掲載されました。
フィールズ賞受賞者ピーター・ショルツへのインタヴュー
2019年06月 Ulf Persson(チャルマース工科大学 スウェーデン ヨーテボリ)、EMS Newsletter編集委員
UP(Ulf Persson): 受賞するのは驚きでしたか?
PS(Peter Scholze): 私が受賞するはずだという噂を数年間予め聞かされて来たことを考えると、いろいろな意味で驚きではなかった。しかし、その噂によって私はプレシャを感じていたので、私が受賞すると知らされた時、安堵も感じた。
良き教師がいたのですか?
私には良い教師達がいたが、私も非常に数学に惹かれた。
詳しく述べていただけますか?
私が15歳か16歳頃の時、フェルマーの最終定理が証明されていたことを知り、証明が何に関するものなのか、すなわち楕円曲線、モデュラ形式等を理解しようと努めた。何も分からなかった。実際、私は行列が何であるのか知らなかったが、非常に魅力的だった。
しかし、どのように? 殆どの生徒達はこれに巡り会わないだろうし、貴方にそれを指摘したのですか?
正確に憶えてないが、それが正に私が良い教師達を持ち、数学五輪で多くの同好の生徒達と会う役割を果たした。
これは若く急成長する数学者達にとって自然だと思います。何と言っても私達は幼い年齢で数を親しみ、遊んでいただろうから。しかし、貴方は理解不足によって落胆しなかったのですか?
いいえ、とんでもない。それ全体がワクワクさせ、私に大変興味を持たせ、それ全体が意味したことを学ぼうと没頭したから...
ところで貴方はたくさん読みますか? そして、そうなら始めから終わりまで系統立てて読むのか、それとも肝心の部分を探しながら走り読みするのですか?
私はたくさん読む。いくつかの本は始めから終わりまで読む。特に新しい分野の基礎を習おうと努力している時だ。だが、そうではなく私が気をつけている情報を探すため論文を走り読みすることがよくある。
434(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/15(日) 19:49:01.06 ID:BvQtIPz4(18/25) AAS
これ結構面白い
https://www.nippyo.co.jp/shop/magazines/latest/4.html
数学セミナー 2020年1月号
内容紹介
SF作家・劉慈欣氏の小説『三体』が話題となっている。そこで今回は、本小説のモチーフとなっている3体問題に焦点をあて、その基礎から力学系への拡がりまでを紹介する。
特集= 3体問題と力学系
__________________________
*小説『三体』について……立原透耶 8
*「3体問題が解けない」とはどういう意味か……山中祥五 11
*3体問題はなぜ解けないか/可積分性の判定条件を目指した我が闘争
……吉田春夫 16
*3体問題におけるカオスと記号力学系……柴山允瑠 22
*三体問題と摂動論……伊藤秀一 28
*弱KAM理論……曽我幸平 33
*変分原理と群論が解き明かす三体8の字解の分岐
……藤原俊朗/福田 宏/尾崎浩司 40
435: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/15(日) 21:21:12.14 ID:BvQtIPz4(19/25) AAS
>>434
>SF作家・劉慈欣氏の小説『三体』が話題となっている。
これか
https://ja.wikipedia.org/wiki/%E4%B8%89%E4%BD%93
『三体』(さんたい)は、中華人民共和国のSF作家劉慈欣の長編SF小説。2006年5月から12月まで、中国のSF雑誌『科幻世界(中国語版)』で連載され、2008年1月に重慶出版社によって単行本が出版された。本作は「地球往事」三部作の第一作である。
本作、またこれを含む「地球往事」三部作(『三体』三部作ともいう)は中国において最も人気のあるSF小説の一つとされ、2015年時点で50万組以上を売り上げている[1]。また、本作は2014年11月にケン・リュウによる英訳が出版され、これも複数のSF賞にノミネートされるなど高く評価されている。
日本語版は2019年7月4日に早川書房より発売された。日本語訳は、光吉さくらとワン・チャイの共訳による翻訳原稿を、中国語の分からない大森望が英訳版を読みながら改稿したものである[2]。
目次
1 設定
2 あらすじ
3 改変
4 その他
5 受賞歴
6 翻訳本
7 参考項目
設定
小説の基本設定には、ニュートン力学にある古典的な三体問題を取り込んだものがある。とある三重星系には、生きと滅びを繰り返す三体星人があり、その中の最も新しい世代の三体星人は、地球文明の科学技術より数倍先端なものを有している。
436(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/15(日) 21:34:52.64 ID:BvQtIPz4(20/25) AAS
>>431
追加
http://taro-nishino.blogspot.com/2019/12/blog-post077.html
TARO-NISHINOの日記
数論の賢人
12月 12, 2019
(抜粋)
p-進数体系においては、2つの数の違いが小さいのではなく、その違いがpにより多数回割り切れるならば2つの数は近いと考える。
奇妙な判断基準だが、便利なものだ。例えば、3-進数は3の因子が鍵となるx2 =3y2のような方程式を研究する自然な方法を与える。
p-進数は"私達の日常の直観からは遠くかけ離れている"とショルツは言った。しかし、長年にわたって、それらが彼にとって自然と感じるようになって来ている。"今やp-進数よりも実数の方がずっとずっと混乱させると感じる。
私はそれらに余りにも慣れて来ているので今では実数が非常に奇妙だ"。
数体系の無限塔を作ってp-進数を展開するならp-進数に関する多くの問題がより簡単になることに数学者達は1970年代に注目した。数体系の無限塔では一つがその下に一つをp回包み、塔の底ではp-進数を用いる。
この無限塔の"最上階"には極度に包装された空間がある。すなわち、後にショルツが展開することになるパーフィクトイド空間の最も簡単なフラクタルなオブジェクトだ。
ショルツはこの無限包装の構築がp-進数と多項式に関するとても多くの問題をより簡単にする理由を解決することを自らに課した。"私はこの現象の中核を理解しようと努めた。それを説明出来る一般的形式論は無かった"。
彼は最後には幅広い数学構造に対するパーフィクトイド空間を構築することが可能だと理解した。これらのパーフィクトイド空間がp-進世界から多項式に関する問題を異なる数学世界に滑り込ませることが可能だと彼は示した。
この異なる数学世界では算術がずっと簡単だ(例えば、足し算をする時に繰り上げる必要が無い)。"パーフィクトイド空間に関する不思議な特性は、それらが2つの数体系の間を神秘的に動けることだ"とWeinsteinは言った。
つづく
437(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/15(日) 21:35:35.28 ID:BvQtIPz4(21/25) AAS
>>436
つづき
この考察は彼にウェイト・モノデュロミ予想と呼ばれる、多項式のp-進解に関する複雑な命題の部分的証明をさせた。これが彼の2012年の学位論文になった。その学位論文は"とても広範囲な影響力を持っていたから、世界中の研究グループの話題だった"とWeinsteinは言った。
ジャングルを飛越える
パーフィクトイド空間の複雑性にもかかわらず、ショルツは彼の話と論文の明晰性で有名だ。"ピーターが私にそれを説明するまで、私はそれほど分かっていない"とWeinsteinは言った。
ショルツは必ず彼のアイディアを初心大学院生でもついて来られるレヴェルで説明しようとするとCaraianiは言った。"アイディアの用語に、この公開性と寛容性のセンスがある。
だが、ショルツの説明を借りてさえ、パーフィクトイド空間は他の研究者にとって把握するのが難しいとHellmannは言った。"もし貴方が径または彼が規定する方法から少し外れたなら、貴方はジャングルの真っ只中におり、実に困難だ"。
しかし、ショルツ自身は"ジャングルと格闘しようとするはずがないから、ジャングルで自分を見失わないであろう。ある種の明確な概念に対して彼はいつも概観を求めている"とHellmannは言った。
ショルツはジャングルを力ずくで飛越えることでジャングルのつるの中で錯綜することを避ける。彼が大学にいた時と同様に、彼は何も書き下さないで研究することを好む。
それは可能な限り最高に明晰な方法にアイディアを定式化しなければならないことを意味すると彼は言った。"頭脳の中では或る種の限られた能力しかないのだから、余りにも複雑なことは出来ない"。
他の数学者達が今パーフィクトイド空間を取組む始めている間に、パーフィクトイド空間に関する最も広範囲にわたる発見の一部は、驚くことではないが、ショルツと彼の共同研究者から来ている。
2013年にオンラインで彼が投稿した結果は"実際に或る程度コミュニティを仰天させた。私達はそのような定理が出現するとは思わなかった”とWeinsteinは言った。
つづく
438(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/15(日) 21:36:52.78 ID:BvQtIPz4(22/25) AAS
>>437
つづき
ショルツの結果は相互法則として知られている規則の範囲を拡張した。相互法則は時計(必ずしも12時間を持つものではないけれども)の算術を使用する多項式の振舞いを管理する。時計算(例えば、時計が12時間を持っているなら8 + 5 = 1)は数学の中で最も自然で広く研究された有限数体系だ。
相互法則は200歳の平方剰余の相互法則(数論の基礎であり、ショルツの個人的お気に入りの定理)の一般化である。法則は2つの素数pとqが与えられた時、殆どの場合、p時間を持つ時計上でqが完全平方である時にのみq時間を持つ時計上でpが完全平方であると述べている。例えば、5は11時間を持つ時計上で5 = 16 = 42だから完全平方であり、11は5時間を持つ時計上で11 = 1 = 12だから完全平方である。
"私はそれを非常に驚きだと思う。外見上は、これら2つの事柄は互いと関係がないと思える"とショルツは言った。
"この法則を一般化する試みと全く同様に、多くの現代代数的数論を解釈出来る"とWeinsteinは言った。
20世紀の半ば、数学者達は相互法則と全く異なる議題に思えるものの間に驚くべき繋がりを発見した。その議題はM. C. エッシャーの有名な円板の天使と悪魔のタイリングのようなパターンの"双曲的"幾何学である。
この繋がりは数論、幾何学、解析学の間の関係に関する密接に結びついた予想と定理の集まりである"ラングランズ・プログラム"の中核部分だ。これらの予想が解決される時、それらは非常にパワフルである。例えば、フェルマの最終定理の証明はラングランズ・プログラムの一つの小さな(だが、高度に非自明な)セクシュンを解くことに要約される。
数学者達は次第にラングランズ・プログラムが双曲的円板をはるかに超えて拡大していることに気づくようになって来ている。高次元双曲的空間といろいろな状況においても研究可能である。
ところで、ショルツはラングランズ・プログラムを"双曲的3-空間"(双曲的円板の3次元の類似)とその先における多種多様な構造へ拡張する方法を示している。双曲的3-空間のパーフィクトイド版を構築することによって、ショルツは相互法則の全く新しい一組を発見している。
"ピーターの研究は成し得るもの、私達が近づくものを完全に一変させて来ている"とCaraianiは言った。
つづく
439(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/15(日) 21:37:16.60 ID:BvQtIPz4(23/25) AAS
>>438
つづき
ショルツの結果はラングランズ・プログラムが"私達が思ったよりも深遠であり...もっと系統的、絶えず存在する"ことを示しているとWeinsteinは言った。
速い前線
Weinsteinによれば、ショルツと数学を議論することは"本当の賢人"に意見を求めることと似ている。"彼が'イエス、上手く動く'と言えば自信を持てる。彼がノゥと言えば直ちに諦めるべきだ。彼が分からない(偶々起きる)と言えば、手中に興味深い問題を持っているのだから貴方はついている"。
Caraianiは言った。彼女がショルツと研究した時、急いでやる感覚は決してなかったと彼女は言った。"どうしてかいつも私達が正しいやり方でやっているような感じだった。つまり、何とかして私達が出来るであろう最も一般的な定理を証明すること、事柄を解明するだろう正しい構築をすること"。
けれども、ショルツ自身が急いでやった時があった。すなわち、彼の娘の誕生の直前、2013年の末に論文を仕上げようと努めていた間だった。その時は彼が自身を急かす良いことだったと彼は言った。"後にはやり過ぎしなかった"。
父親になることは時間の使い方に統制を取らせたとショルツは言った。だが、研究のための時間を封鎖する必要はない。すなわち、彼の他の義務の間に数学が全空間を埋めているだけだ。"数学が私の情熱だと思う。いつも数学を考えたい"。
それでも彼はこの情熱を美化する傾向が全くない。彼は数学者に生まれついたと思うかと訊かれると異議を唱えた。"それは余りにも哲学的に聞こえる"と彼は言った。
以上
(引用終り)
440: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/15(日) 21:42:47.35 ID:BvQtIPz4(24/25) AAS
>>436
>数体系の無限塔を作ってp-進数を展開するならp-進数に関する多くの問題がより簡単になることに数学者達は1970年代に注目した。数体系の無限塔では一つがその下に一つをp回包み、塔の底ではp-進数を用いる。
岩澤理論かな
https://ja.wikipedia.org/wiki/%E5%B2%A9%E6%BE%A4%E7%90%86%E8%AB%96
岩澤理論
(抜粋)
Zp-拡大
岩澤が端緒としたのは、代数的数論において Zp 拡大と呼ばれる、そのガロア群が p-進整数環の加法群 Zp と同型となるような体の塔(拡大列)の存在性である。
このガロア群は理論中しばしば Γ と書かれ、(アーベル群ではあるが)乗法的に記される。
このような群は、(そのガロア群が本質的に射有限群であるような)無限次元代数拡大のガロア群の部分群として得られる。
この群 Γ それ自身は、ある素数 p を固定したときの、加法群 Z/pnZ (n = 1, 2, ...) たちが自然な射影によって成す逆系の逆極限(Z の射有限完備化)である。
これはまた、ポントリャーギン双対を考えれば、任意の p の冪に対する 1 の冪根全体が成す円周群の離散部分群の双対として得られるコンパクト群が Γ であるとも述べられる。
441: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/15(日) 21:46:32.02 ID:BvQtIPz4(25/25) AAS
>>439
>けれども、ショルツ自身が急いでやった時があった。すなわち、彼の娘の誕生の直前、2013年の末に論文を仕上げようと努めていた間だった。その時は彼が自身を急かす良いことだったと彼は言った。"後にはやり過ぎしなかった"。
>父親になることは時間の使い方に統制を取らせたとショルツは言った。だが、研究のための時間を封鎖する必要はない。すなわち、彼の他の義務の間に数学が全空間を埋めているだけだ。"数学が私の情熱だと思う。いつも数学を考えたい"。
これ大事だよね
”ショルツ自身が急いでやった時があった。すなわち、彼の娘の誕生の直前、2013年の末に論文を仕上げようと努めていた間だった。”
ショルツは、数学以外の人生の部分でも、しっかりやっているんだね
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.061s