[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
914(3): 132人目の素数さん [sage] 2019/10/17(木) 08:05:51.25 ID:rXxqe236(3/8) AAS
>>912
ご参考にされてるHPは混乱してるのか、間違ったことも混じって書いてありますね。
定理として書いてある
「ζ=exp(2πi/n)の最小多項式は{1,ζ,ζ^2,...,ζ^{n-1}}の全てを解として持ちます.」
は明確に誤り。最小多項式の次数はφ(n)次なので、φ(n)個しか根を持ちえません。
(最小多項式)≠x^n-1 です。
あと、ζ,ζ^2,...,ζ^{n-1}が基底をなすように書いてありますが、これも素数でないnに対しては誤り。
Q上のベクトル空間としての次元もφ(n)なので、基底の個数もφ(n)個です。
919(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/17(木) 10:58:25.68 ID:CX/otP+s(2/9) AAS
>>914
ID:rXxqe236さん、どうもスレ主です。
レスありがとう
(引用開始)
ご参考にされてるHPは混乱してるのか、間違ったことも混じって書いてありますね。
定理として書いてある
「ζ=exp(2πi/n)の最小多項式は{1,ζ,ζ^2,...,ζ^{n-1}}の全てを解として持ちます.」
は明確に誤り。最小多項式の次数はφ(n)次なので、φ(n)個しか根を持ちえません。
(最小多項式)≠x^n-1 です。
あと、ζ,ζ^2,...,ζ^{n-1}が基底をなすように書いてありますが、これも素数でないnに対しては誤り。
Q上のベクトル空間としての次元もφ(n)なので、基底の個数もφ(n)個です。
(引用終り)
?
なんか、混乱していませんか?
(参考)
https://ja.wikipedia.org/wiki/1%E3%81%AE%E5%86%AA%E6%A0%B9
1の冪根
(抜粋)
自然数 n に対し、m (< n) 乗しても決して 1 にならず、n 乗して初めて 1 になるような 1 の冪根は n 乗根として原始的 (primitive) であるという。自然数 n を固定せず、1 の原始 n 冪根あるいは 1 の原始 n 乗根として得られる数を総称し、1の原始冪根(いちのげんしべきこん)、または1の原始累乗根(いちのげんしるいじょうこん)という。
性質
・1 の冪根は全て、ガウス平面における単位円上にある。また概要で述べたことは 1 の n 乗根の全体が位数 n の巡回群となることを示している。
・a を複素数とするとき、a の n 乗根を任意に一つ選んで n√a と記せば、1 の n 乗根に各々 n√a を掛けたものが複素数係数の方程式 xn ? a = 0 の根の全体となる。
・1 の n 乗根をガウス平面上に表し、線分で結ぶと単位円に内接する正 n 角形となる。これは 1 の原始 n 乗根の一つを ξn として以下の式が成り立つことと同じである:
略
https://mathtrain.jp/njokonof1
高校数学の美しい物語
最終更新:2015/11/05
1のn乗根の導出と複素数平面
(抜粋)
定理1:1の n 乗根は複素数平面の単位円周上に等間隔で並ぶ。
定理2:1の n 乗根は全部で n 個あるが,それらの和は0である。
1のn乗根の和
次は定理2の証明です。こちらは解と係数の関係を使うだけです!
証明
1 の n 乗根たちは方程式 z^n?1=0 の解である。
よって,解と係数の関係よりそれらの和は 0 である。
931: Mara Papiyas ◆y7fKJ8VsjM [] 2019/10/17(木) 18:58:50.90 ID:448PbhX4(6/12) AAS
>>914
いちいちごもっとも
>>909みたいにアケスケに書けば
1→ζ→ζ^2→…→ζ^(n-1)→ζ^n=1
みたいなナイーブな認識が
円分体のガロア群に関しては
全然見当違いだと分かる
(クンマー拡大とは違うのだよw)
例えばφ12は4次式で
ζ=exp(2πi/12)cos(2π/12)+i*sin(2π/12)
とすれば
ζ,ζ^5,ζ^7,ζ^11
のみが解
ζ,ζ^5,ζ^7,ζ^11
↓^5
ζ^5,ζ^25=ζ,ζ^35=ζ^11,ζ^55=ζ^7
↓^5
ζ,ζ^5,ζ^7,ζ^11
ζ,ζ^5,ζ^7,ζ^11
↓^7
ζ^7,ζ^35=ζ^11,ζ^49=ζ,ζ^77=ζ^5
↓^7
ζ,ζ^5,ζ^7,ζ^11
ζ,ζ^5,ζ^7,ζ^11
↓^11
ζ^11,ζ^55=ζ^7,ζ^77=ζ^5,ζ^121=ζ
↓^5
ζ,ζ^5,ζ^7,ζ^11
これはクライン群で、巡回群ではないね
941(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/17(木) 22:08:16.25 ID:khSgay+Z(7/9) AAS
>>914 >>934-935
ID:rXxqe236さん、ID:448PbhX4さん、あなたたちが正しいわ
大変失礼しました。円分多項式(円周等分多項式)ですよね
草場公邦 「ガロワと方程式」P118 5.5 「円周等分多項式の既約性」
に、詳しい説明がありました
とすると、”1のn乗根 (Joh著) 物理のがきしっぽ”さん http://hooktail.sub.jp/algebra/1sNthRoot/
n=pのときのイメージのままで書いているのかも(^^;
(参考)
https://ja.wikipedia.org/wiki/%E5%86%86%E5%88%86%E5%A4%9A%E9%A0%85%E5%BC%8F
円分多項式
このように n 乗して初めて 1 となる複素数(1 の原始 n 乗根)全てを根に持ち、最高次数の項の係数が 1 である多項式が円分多項式 Φn(x) である。
https://ndu-rep.repo.nii.ac.jp/?action=repository_uri&item_id=517&file_id=22&file_no=1
円周等分多項式の有理数体上での既約性
著者桜岡 充
雑誌名日本歯科大学紀要. 一般教育系
巻28
ページ9-14
発行年1999-03-20
http://www.asakura.co.jp/books/isbn/978-4-254-11467-6/
ガロワと方程式
A5変/192ページ/1989年07月10日
ISBN978-4-254-11467-6 C3341
草場公邦 著
http://www.kurims.kyoto-u.ac.jp/~kenkyubu/bessatsu/open/B50/pdf/B50_015.pdf
ラグランジュとガウスの代数方程式論の比較的考察
高瀬正仁
九州大学 MI 研究所/日本オイラー研究所
(抜粋)
円周等分方程式の代数的可解性を全面的に保証するにはこれでは不十分であり,もっと精密な
相互関係を明らかにしなければならないが,ガウスはこれに成功し,『アリトメチカ研究』の第7
章において円周等分方程式の根は巡回的であることを明らかにした.代数的可解性は根の巡回性に
支えられているのである.
円周等分方程式の領域ではラグランジュの省察は正鵠を射ていたが,具体的に表れたものはなお
雛形に留まっていた.根の相互関係への着目という一点においてガウスに影響を及ぼしたのは間違
いないが,ガウスが発見した根の巡回性はラグランジュの到達した地点からあまりにも遠いところ
にあった.それでもラグランジュはガウスが遂行したことの意味合いを理解して,書簡を送ってガウスを称讃した.
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.045s