[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
913(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/17(木) 07:47:58.84 ID:khSgay+Z(5/9) AAS
>>912
> 1+ζ + ...+ζ ^n-1=0
これは、二項方程式 x^n - 1=0
で、
下記の根と係数の関係を適用すると
上記の方程式のn-1次の項が0であることから
導かれるね
https://ja.wikipedia.org/wiki/%E6%A0%B9%E3%81%A8%E4%BF%82%E6%95%B0%E3%81%AE%E9%96%A2%E4%BF%82
根と係数の関係
(抜粋)
根と係数の関係
n 個の文字 α1, α2, ..., αn に関する p 次基本対称式を s p(α1, α2, ..., αn) あるいは単に sn,p とする。
例えば
sn,1 = α1 + α2 + … + αn,
・
・
sn,n = α1α2… αn.
x に関する n 次式 anx^n + an?1x^n?1 + … + a1x + a0 の根が α1, α2, ..., αn であるとき、
sn,n-k=(-1)^{n-k}・ak/an
(k = 0, 2, ..., n ? 1)が成り立つ。これを多項式の根と係数の関係という。
917(1): 132人目の素数さん [sage] 2019/10/17(木) 08:41:51.22 ID:rXxqe236(6/8) AAS
>>913
1+ζ + ...+ζ ^n-1=0 の証明
S=1+ζ + ...+ζ ^n-1にζを掛けると巡回的に項がずれるが和としては不変であることが観察できる。
すなわち、S=ζS.
(1-ζ)S=0 で、1-ζ≠0 より S=0.
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.034s