[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
896
(1): Mara Papiyas ◆y7fKJ8VsjM [] 2019/10/16(水) 22:31:22.53 ID:/906omXv(9/12) AAS
>>894
>二項方程式 X^5-a=0 が既約として、
>この方程式のガロア群は、位数5の巡回群になる
>と議論を単純化できる

そりゃ基礎体を円分体とした場合だろ?
基礎体がQだったらどうだい?

>方程式のガロア群では、普通は基礎体は
>Qに必要な1のベキ根は全て添加されているとして、
>議論を進める

おまえ、クンマー拡大も知らない馬鹿なのか?w
901
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/16(水) 23:51:19.94 ID:OrOarbJT(12/12) AAS
>>896-897
なにを狼狽して誤魔化そうとしているんだ??w(^^;

 >>890より
(引用開始)
「S_3, S_4, S_5 の部分群の分類」のところで
S_5の位数20の部分群も出てるぞ
(12345), (2354) が生成群だから
部分群に位数5と位数4の巡回群がある
(引用終り)

この「S_5の位数20の部分群 (12345)x(2354)」は
 >>805に書いておいたが、べき根で可解な既約5次方程式での最大の群だよ
この5次方程式は、二項方程式ではない
「可解な5次方程式について - 兵庫教育大学 大迎規宏 著 -修士論文 2003」を読んでみな
因みに、この話は、Coxのガロア本(訳本あるよ)や、エムポストニコフにもある

http://repository.hyogo-u.ac.jp/dspace/bitstream/10132/1612/1/ZD30301003.pdf
PDF 可解な5次方程式について - 兵庫教育大学 大迎規宏 著 -修士論文 2003

http://njet.oops.jp/wordpress/2009/02/21/david-cox-%E3%81%AE%E3%82%AC%E3%83%AD%E3%82%A2%E7%90%86%E8%AB%96%E3%81%AE%E6%9C%AC/
SUKARABE'S EASY LIVING
2009年2月21日 (土) 投稿者: SUKARABE
David Cox のガロア理論の本
(抜粋)
さすが Cox である。期待を裏切らないねえ?。
https://bluexlab.tokyo/812
2018.06.22MATH
整数論・数論の教科書で「名著」と呼ばれるものをご紹介 Written by Soichiro OMI bluexlab
(抜粋)
Galois Theory (Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts)?David A. Cox 著
Coxによるガロア理論の教科書です。600ページを超える大著ですが、扱っている内容はそこまで難しいものではありません。
各節の終わりには「Historical Notes」が記載されており、理論の歴史的背景も学ぶことができます。

http://webcatplus.nii.ac.jp/webcatplus/details/book/277149.html
Webcat Plus
ガロアの理論
エム・ポストニコフ 著 ; 日野寛三 訳
(抜粋)
出版元 東京図書
刊行年月 1964

7. 根号で解かれる5次方程式 / p153
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.034s