[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
838
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/15(火) 07:18:50.26 ID:9ROe+Kvi(1/9) AAS
>>829 (>>836)
ID:ceRjWFfMさん、レスありがとう

(引用開始)
>正しい答えは
>乗法群(Z/nZ)× (位数n-1)
乗法群(Z/nZ)×はいいけど、位数n-1じゃないよ。
(引用終り)

ご指摘の通りです
>>818の訂正版)
Q1. Qに1のn乗根を添加した拡大体をEとする
  このときのガロア群G(E/Q)は?
A1. 面倒なのでn=p(素数)とするよ
 (こう仮定してもガロア理論には十分だから)
 位数pの巡回群
 因みに、1のn乗根 ωp=p√1 (1の原始根)として
 Eは、Qにωpを添加した拡大体になる(ガウスのDAに書いてあるらしい)
(なお、G(E/Q)が可解である(ベキ根で解ける)ことも、ガウスのDAに書いてあるらしい)
(終り)

なお、1のn乗根を添加した拡大体の解説は、下記に詳しい
因みに、最小多項式を考えると、x^n-1=0の”x^n-1”は可約で、因子x-1を持つので、因数分解できて、一般に次数が必ず1下がる
n=p(素数)のとき、最小多項式の次数はp-1です
(おれも、あんまり分かってないね(^^; )
http://hooktail.org/misc/index.php?%C2%E5%BF%F4%B3%D8
ガロア理論入門 物理のがきしっぽ
http://hooktail.sub.jp/algebra/1sNthRoot/
1のn乗根 (Joh著) 物理のがきしっぽ
(抜粋)
1 の原始 n 乗根はφ(n) 個あります.

ここに出てきたφを オイラーのファイ関数 と呼びます.ファイ関数を使うと, |G(E/Q)|=[Q(ζ):Q] <=φ(n) と書くことが出来ます.また,次の定理も重要です.

x^n-1=0 の解 ζ の最小多項式は (x-ζ)(x-ζ^k1)・・・(x-ζ^ks) の形に書けることが要請されます.
添字の ki は, (n,ki)=1 を満たす 1 < k < n だけを取るものとします.
この最小多項式を 円周等分方程式 と呼びます.
円周等分方程式の解は,複素平面上で単位円の円周を等分点に当たりますから,この名前の意味は非常に明快だと思います.
854
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/15(火) 20:57:55.93 ID:9ROe+Kvi(4/9) AAS
>>853
訂正:つづき→つづく

つづき

ところで
>>838
>http://hooktail.sub.jp/algebra/1sNthRoot/
> 1のn乗根 (Joh著) 物理のがきしっぽ
> 1 の原始 n 乗根はφ(n) 個あります.
>ここに出てきたφを オイラーのファイ関数 と呼びます.

これ、下記の「巡回群」の”n が有限ならば G を生成する元の総数はちょうど φ(n) に等しい”と一致しているが
しかし、英文 Cyclic group の
”If p is a prime number, then any group with p elements is isomorphic to the simple group Z/pZ. A number n is called a cyclic number if Z/nZ is the only group of order n, which is true exactly when gcd(n,φ(n)) = 1.”
の記述と不一致?(゜ロ゜;
巡回群とCyclic groupの記述が
いや、調べるとオイラーのφ(n)は、一般に偶数で、素数pがφ(n)には出現しないので、「巡回群」の記述へんだよね(^^
https://ja.wikipedia.org/wiki/%E5%B7%A1%E5%9B%9E%E7%BE%A4
巡回群
(抜粋)
性質
位数 n の巡回群(n は無限大でもよい)G と G の任意の元 g について、以下のようなことが言える。
・n が有限ならば G を生成する元の総数はちょうど φ(n) に等しい。ここで φ はオイラーのトーシェント函数である[4]。
・もっと一般に、d が n の約数ならば Z/nZ の位数 d の元の個数は φ(d) である。また、m の属する剰余類の位数は n/gcd(n,m) で与えられる。
・p が素数ならば、位数 p の群は(同型の違いを除き)巡回群 Cp(あるいは加法的に書くならば Z/pZ)しかない[5]。

つづく
861: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/15(火) 22:34:59.55 ID:9ROe+Kvi(7/9) AAS
>>838
そうか
>>818の訂正版)
と訂正書いたけど、
最初の>>818で合っていたんだね
1のn乗根を添加の話
理解不十分で、記憶だけで書くから、だめなんだな
しっかり理解しておかないとね
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.044s