[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
832
(4): 132人目の素数さん [sage] 2019/10/14(月) 23:51:47.04 ID:ceRjWFfM(3/4) AAS
1のべき根の方程式が解けるといっても、勿論1のn乗根=1^{1/n} とするのはなしねw
1のn乗根を代数的に解いたとき、冪根指数としてあらわれるのは
φ(n)の約数のみ。根号の中身は1ではない複雑な数になる。
(整数論的に言うと、分岐する素数と関係がある。)
10
(1): 132人目の素数さん [] 2019/09/10(火) 00:17:54.38 ID:588mTDvG(2/5) AAS
これもなサル

>>842
>Ω ⊂ R^N と Ω ∈ R^N はまったく別ものである

「まったく別もの」ではない
詳しくは、>>832の「ZFC公理系について:その1(及び2)」を読んでみな

簡単に書くと
1)二つの集合A,Bで、A ∈ B → A ⊂ B
 ∵ 集合Aの全ての元aは、集合Bの元だから
2)二つの集合A,Bで、A ⊂ B → A ∈ B
 ∵ 集合B中で、集合Aの全ての元aを集めて、内部に集合Aを構成できるから
3)”A ∈ B → A ⊂ B” & ”A ⊂ B → A ∈ B”が成立つから、二つは同値
QED
11
(1): 132人目の素数さん [] 2019/09/10(火) 00:24:12.40 ID:588mTDvG(3/5) AAS
恥を晒すだけという指摘はまったく正しい


詳しくは、>>832の「ZFC公理系について:その1(及び2)」を読んでみな

簡単に書くと
1)二つの集合A,Bで、A ∈ B → A ⊂ B
 ∵ 集合Aの全ての元aは、集合Bの元だから
2)二つの集合A,Bで、A ⊂ B → A ∈ B
 ∵ 集合B中で、集合Aの全ての元aを集めて、内部に集合Aを構成できるから
3)”A ∈ B → A ⊂ B” & ”A ⊂ B → A ∈ B”が成立つから、二つは同値
QED
30
(11): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/11(水) 07:43:22.83 ID:IlUCyPH9(3/9) AAS
>>21
うん、それね、おれ間違っているね(^^;
スレ76 2chスレ:math
引用
>>842
>Ω ⊂ R^N と Ω ∈ R^N はまったく別ものである
「まったく別もの」ではない
詳しくは、>>832の「ZFC公理系について:その1(及び2)」を読んでみな
簡単に書くと
1)二つの集合A,Bで、A ∈ B → A ⊂ B
 ∵ 集合Aの全ての元aは、集合Bの元だから
2)二つの集合A,Bで、A ⊂ B → A ∈ B
 ∵ 集合B中で、集合Aの全ての元aを集めて、内部に集合Aを構成できるから
3)”A ∈ B → A ⊂ B” & ”A ⊂ B → A ∈ B”が成立つから、二つは同値
(引用終り)

1)まず、上記2)は、スレ76 2chスレ:math
 に自分で書いたように、正則性公理から反例 x not∈ x (x ⊂ xであるにも関わらす)が出るから間違い
 (それ以外にも、反例はあるな。後述)
2)では、上記1)は、どうだろうか?
 下記の筑波大 坪井先生の数理論理学IIをベースに考えてみよう
 P5 公理的集合論「x ∈ y の直観的な意味は,もちろん元x が集合y に属することであるが,x も一つの集合だと考える.」
 ”元x も一つの集合だと考える”とすると、x ∈ y → x ⊂ y だろうと
 しかし、ZFC公理系から導けると思って、トライしたが、残念ながらできなかった(^^;
 (そういう文典も探したが、見つけられなかった)
3)しかし、我々の通常接する素朴集合論に近い議論では、”x ∈ y → x ⊂ y ”を認めた方が良いという結論に至った
4)その一つの理由が、P11の「1.3 順序数」の、
「素朴集合論では同値類 X/〜 を(一つの)順序数とよぶ.
しかし整列順序の全体は(大きすぎて)集合にはならない.X と順序同型
なものたち全体に限っても集合ではない.したがって,素朴集合論における通
常の構成法は厳密な議論には相応しくないので,別の構成法を考えなくてはならない.
基本的な考え方は,∈ がその上で整列順序になる集合たちのクラスを上手に
定義して,それに属する集合を順序数として定義すること」
(要するに、∈−順序な)

つづく
82
(2): 132人目の素数さん [] 2019/09/13(金) 00:12:20.93 ID:T2CuI5jY(1/4) AAS
これテンプレに入れとけサル
数学板の名物になるぞw

>>842
>Ω ⊂ R^N と Ω ∈ R^N はまったく別ものである

「まったく別もの」ではない
詳しくは、>>832の「ZFC公理系について:その1(及び2)」を読んでみな

簡単に書くと
1)二つの集合A,Bで、A ∈ B → A ⊂ B
 ∵ 集合Aの全ての元aは、集合Bの元だから
2)二つの集合A,Bで、A ⊂ B → A ∈ B
 ∵ 集合B中で、集合Aの全ての元aを集めて、内部に集合Aを構成できるから
3)”A ∈ B → A ⊂ B” & ”A ⊂ B → A ∈ B”が成立つから、二つは同値
QED
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.048s