[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
809(1): 132人目の素数さん [sage] 2019/10/14(月) 13:51:45.22 ID:keS+8+Fy(1) AAS
>>805
なお、5次の代数方程式が代数的に解けるのは、方程式のガロア群が
彌永先生の本や倉田本では、線形群と書いていたけど、位数20の群になるとき
え?こんなの成立しないよ?
Q上5次のGalois拡大あるけど?
811(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/14(月) 16:13:28.62 ID:w6tqRMw5(9/18) AAS
>>809
ほいよ(^^;
彌永先生の本にもあるよ
(>>773より)
https(URLがNGなので、キーワードでググれ(^^ )
ガロアの第一論文を読む 渡部 一己 著(2018.1.28)
https(URLがNGなので、キーワードでググれ(^^ )
ガロア第一論文(galois-1.pdf)渡部 一己 著(2018.1.28)
(抜粋)
P130
問題 累乗根で解ける素数 n 次の既約方程式の群は何であるか?
【問題?】 累乗根で解ける k上の素数 n 次の既約方程式 f=0 のガロア群を求めよ.
1°(f のガロア群は線形置換群)
P155
命題?で見たように,5次方程式が代数的に解けるときには,そのガロア
群は上に示されているような高々位数が20の置換群(線形置換群)でなければならない.
ところが,一般の5次方程式ではガロア群は5個の根のすべての順列の間の置換であるから,
群の位数は 5!=120 である.つまり代数的に解ける5次方程式のガロア群の位数よりも大きい.
このことからも一般の5次方程式が代数的に解けないことがわかる.
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.046s