[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
802
(2): Mara Papiyas ◆y7fKJ8VsjM [] 2019/10/14(月) 11:23:22.71 ID:llLaGKvq(4/12) AAS
>>801
貴様のような馬鹿にはガロア理論は到底無理だから諦めろ

馬鹿はただ
「5次以上の代数方程式の根はよっぽど幸運でもない限り
 四則演算とべき根だけでは表せないんだってさ」
と覚えとけばいい どうせ理由なんかわかんないんだからw
13: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/10(火) 07:11:04.84 ID:IDqpcJO6(1/2) AAS
スレ76 2chスレ:math
遠隔レスすまん
(引用開始)
>>803は、いろいろ問題があるね
>命題の真偽に,より精密な定義を与えることが必要となる。
>そして,それを実行したのが,
>ゲンツェンによる"自然数論の無矛盾性証明"である。
これ、最大級の誤解
(引用終り)

この書き方を見ると
ID:bH+0Hw/zさん、>>803を、私スレ主が書いた文と錯覚したんだろうかね

過去にも似た例があって、引用部分を、私スレ主が書いた文と錯覚して、突っかかって来たことがあった
ピエロもそうだったね

ここの>>803は、>>802
https://www.jstage.jst.go.jp/article/kisoron1954/14/3/14_3_107/_pdf/-char/ja
自然数論の無矛盾性証明の必要性 前原昭二 筑波大学数学系 科学基礎論研究 Vol.14 1979
前原昭二先生からの引用なのだから、イチャモンつけるのは、もっと慎重になるべきだったろう

自分が、新井敏康PDF(下記)を引用するなら、最初からそうしておけば良かったろうに
https://www.jstage.jst.go.jp/article/kisoron1954/34/2/34_2_91/_pdf/-char/en
無矛盾性証明について 新井敏康*神戸大学自然科学研究科 科学基礎論研究 2007

錯覚して、粗雑な書き方をするから、だめだめなんだな(^^
805
(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/14(月) 12:02:11.79 ID:w6tqRMw5(5/18) AAS
>>802
> 5次以上の代数方程式の根はよっぽど幸運でもない限り

いやね
5次の代数方程式のガロア群が、正20面体群になるんだけど(下記)
正20面体群がいまいち、すっきりしたイメージが湧かないので
(証明では、位数60の単純群までしか分解できないのは、長さ3と5の置換の組合わせで位数60になるというのだけれど・・)
下記の「正20面体と5次方程式 (シュプリンガー数学クラシックス)」も、買って読みましたよ
あとまあ、いろいろ調べたりして、なんとなく分かった気になったよ(^^

なお、5次の代数方程式が代数的に解けるのは、方程式のガロア群が
彌永先生の本や倉田本では、線形群と書いていたけど、位数20の群になるとき
まあ、下記の「PDF 可解な5次方程式について - 兵庫教育大学 大迎規宏 著 -修士論文 ?2003」に詳しい

(参考)
https://books.rakuten.co.jp/rb/9570192/
楽天ブックス
正20面体と5次方程式 (シュプリンガー数学クラシックス)
フェリックス・クライン
発売日: 1997年04月
著者/編集: フェリックス・クライン, 関口次郎
出版社: シュプリンガー・ジャパン
発行形態: 単行本
ページ数: 317p

http://repository.hyogo-u.ac.jp/dspace/bitstream/10132/1612/1/ZD30301003.pdf
PDF 可解な5次方程式について - 兵庫教育大学 大迎規宏 著 -修士論文 ?2003

https://ja.wikipedia.org/wiki/%E6%AD%A3%E4%BA%8C%E5%8D%81%E9%9D%A2%E4%BD%93
正二十面体
(抜粋)
正二十面体の回転対称群(英語版)は5文字の交代群 A_{5} に同型である。位数は60。
この非可換単純群は5文字の対称群 S_{5} の唯一の非自明な正規部分群である。
一般の五次方程式のガロア群は5文字の対称群に同型であり、そしてこの正規部分群が単純で非可換なので、一般の五次方程式は冪根による解を有しない。
アーベル‐ルフィニの定理の証明はこの単純な事実を用いる。
そしてフェリックス・クラインは正二十面体的対称性(英語版)の理論を利用して一般の五次方程式の解析的解法を導く本を書いた (Klein 1888)。
詳しい歴史ならびに関係する7文字と11文字の対称性については正二十面体的対称性#関連する幾何学的性質(英語版)を見よ。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.038s