[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
467(1): 132人目の素数さん [] 2019/09/22(日) 17:13:57.56 ID:g+51A3D4(5/25) AAS
____
/::::::::::::::::\
/::::::─三三─\
/:::::::: ( ○)三(○)\ {{1, 2, 3}, {3, 4, 5, 7}, ∅}は 3 個の元からなる集合である
|::::::::::::::::::::(__人__):::: | ________
\::::::::: |r┬-| ,/ .| | |
ノ:::::::::::: `ー'´ \ | | |
/::::::::::::::::::::: | | |
|::::::::::::::::: l | | |
471(10): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/22(日) 18:12:53.77 ID:dCfcIyTY(10/20) AAS
>>465-470
ほんと、コケコッコー(おれ)もレベル低いけど、おサルも低レベルだな〜w(^^
(つーか、いまふと思ったが、彼のサイコパス性格(屁理屈を使ってでも相手に反論しないと気が済まない)が出ているなー(>>2ご参照)。すげー、低レベルの屁理屈反論w(^^; )
笑える
じゃw
(>>411より)
整数環Zに合同(≡又はmod)を定義して、あるnによる同値類でn個の同値類が出来る
単に、Zを均等にn個に分けただけ
各0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZたちは、無限集合だ
そのn個を集めて、集合を作る
Z/nZと書くのが普通だそうだが、集合の元はたったのn個だから、Z/nZは有限集合だと?
(引用終り)
「Z/nZは有限集合」と書いてある文献探して、提示してくれ
そうしたら、スレを閉じて、すっぱりと、おれは5CH数学板から去るよ(^^;
おっと、「Z/nZは有限集合」と書いてある”そのものずばり”だよ
(>>466は、だめだよ)
はい、どうぞ〜!ww(^^;
(参考)
http://math.shinshu-u.ac.jp/~hanaki/edu/intro/intro2013.pdf
代数学入門 花木 章秀 信州大 2013
(抜粋)
P29
3.2 整数の合同によって定義される環
ある l ∈ Z が存在して
a - b = nl となるとき a ≡ b (mod n) と書くことにする。
このときこの関係は同値関係である。その a を含む同値類は
a + nZ = {b ∈ Z | a ≡ b (mod n)} = {a + nl | l ∈ Z}
であった。異なる同値類全体の集合は
Z/nZ = {0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZ}である。
(引用終り)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.051s