[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
30(11): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/11(水) 07:43:22.83 ID:IlUCyPH9(3/9) AAS
>>21
うん、それね、おれ間違っているね(^^;
スレ76 2chスレ:math
引用
>>842
>Ω ⊂ R^N と Ω ∈ R^N はまったく別ものである
「まったく別もの」ではない
詳しくは、>>832の「ZFC公理系について:その1(及び2)」を読んでみな
簡単に書くと
1)二つの集合A,Bで、A ∈ B → A ⊂ B
∵ 集合Aの全ての元aは、集合Bの元だから
2)二つの集合A,Bで、A ⊂ B → A ∈ B
∵ 集合B中で、集合Aの全ての元aを集めて、内部に集合Aを構成できるから
3)”A ∈ B → A ⊂ B” & ”A ⊂ B → A ∈ B”が成立つから、二つは同値
(引用終り)
1)まず、上記2)は、スレ76 2chスレ:math
に自分で書いたように、正則性公理から反例 x not∈ x (x ⊂ xであるにも関わらす)が出るから間違い
(それ以外にも、反例はあるな。後述)
2)では、上記1)は、どうだろうか?
下記の筑波大 坪井先生の数理論理学IIをベースに考えてみよう
P5 公理的集合論「x ∈ y の直観的な意味は,もちろん元x が集合y に属することであるが,x も一つの集合だと考える.」
”元x も一つの集合だと考える”とすると、x ∈ y → x ⊂ y だろうと
しかし、ZFC公理系から導けると思って、トライしたが、残念ながらできなかった(^^;
(そういう文典も探したが、見つけられなかった)
3)しかし、我々の通常接する素朴集合論に近い議論では、”x ∈ y → x ⊂ y ”を認めた方が良いという結論に至った
4)その一つの理由が、P11の「1.3 順序数」の、
「素朴集合論では同値類 X/〜 を(一つの)順序数とよぶ.
しかし整列順序の全体は(大きすぎて)集合にはならない.X と順序同型
なものたち全体に限っても集合ではない.したがって,素朴集合論における通
常の構成法は厳密な議論には相応しくないので,別の構成法を考えなくてはならない.
基本的な考え方は,∈ がその上で整列順序になる集合たちのクラスを上手に
定義して,それに属する集合を順序数として定義すること」
(要するに、∈−順序な)
つづく
31(7): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/11(水) 07:43:52.73 ID:IlUCyPH9(4/9) AAS
>>30
つづき
5)∈−順序は、推移的なので、xの任意の元 u ∈ x が成立つと、x ∈ y → u ∈ y成立(∵推移性より)
だから、この場合は”x ∈ y → x ⊂ y ”成立
6)で、我々が通常扱う集合は、超限帰納法も適用可の場合が多く、∈−順序が成立つとして良い
∈−順序が成立つ場合は、”x ∈ y → x ⊂ y ”成立
7)「まったく別もの」ではないが、別もの
8)なお、”x ∈ y → x ⊂ y ”を認めないと、素朴集合論のベン図に反例が出る
つまり、x ∈ yであるにも関わらず、xのある元 u ∈ x で、u not∈ y となると、素朴集合論のベン図が描けないw(^^;
(∈−順序を仮定しないとどうなるか? 上記のように、分からんかった(^^;
坪井先生の上記、”整列順序の全体は(大きすぎて)集合にはならない”のような記述もあるので、
自分の考えが、”公理的集合論”の範囲内か範囲外かが、判断できないので、ギブアップします)
(参考)
http://www.math.tsukuba.ac.jp/~tsuboi/
Akito Tsuboi 筑波大
http://www.math.tsukuba.ac.jp/~tsuboi/under.html
学群関係
http://www.math.tsukuba.ac.jp/~tsuboi/und/14logic3.pdf
数理論理学II Akito Tsuboi 筑波大
(追加参考)
https://www.practmath.com/ordinal-number/
実用的な数学を
2019年4月18日 投稿者: TAKAN
順序数 Ordinal Number
(抜粋)
ともあれそんな『比較』ですが、
なにでやるかというと、「帰属関係 ∈ 」を使ってやります。
(引用終り)
以上
32(1): 132人目の素数さん [sage] 2019/09/11(水) 07:47:36.90 ID:h4/yIPnA(5/12) AAS
>>29-30
>>21を読もう
x ∈ y → x ⊂ y の初等的反例を示してるぞ
やっぱニワトリには集合論は無理かw
33(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/11(水) 07:49:58.02 ID:IlUCyPH9(5/9) AAS
>>30 補足
>(それ以外にも、反例はあるな。後述)
・例えば、自然数Nで、偶数の集合を、2Nとすると
2N ⊂ N が成立つ
・しかし、2N ∈ N とすると、2Nは可算無限集合なので、Nの元は有限順序数のみの定義に反する (^^;
36(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/11(水) 14:05:23.70 ID:z0Cctf8f(1/10) AAS
>>31 訂正
7)「まったく別もの」ではないが、別もの
↓
7)「別もの」だが、「まったく別もの」ではない
かな(^^;
補足
繰り返すが、
・>>30での、筑波大 坪井先生
公理的集合論「x ∈ y の直観的な意味は,もちろん元x が集合y に属することであるが,x も一つの集合だと考える」
(”元x も一つの集合だと考える”とすると、直感的には、x ∈ y → x ⊂ y だろうと)
・(>>31より)∈−順序は、推移的なので、xの任意の元 u ∈ x が成立つと、x ∈ y → u ∈ y成立(∵推移性より)
だから、この場合は”x ∈ y → x ⊂ y ”成立
・∈−順序を認めないと、超限帰納法が適用困難になる(別の整礎関係(下記)の定義が必要になる)
・”x ∈ y → x ⊂ y ”を認めないと、素朴集合論のベン図に反例が出る
つまり、x ∈ yであるにも関わらず、xのある元 u ∈ x で、u not∈ y となると、素朴集合論のベン図が描けないw(^^;
・あと”モストウスキーの崩壊補題”との関係で、
普遍的な整礎関係:「クラス X 上の集合的な整礎関係 R に対し、クラス C が存在して、(X, R) が (C, ∈) に同型となる」
とあるので、 (C, ∈) つまり∈−順序は普遍的と考えてよいのかも
(そもそも、クラス Xとかクラス Cとか、学部の集合論を超えていると思うが(^^; )
で、要するに、ベン図反例のある集合論もありのだろうが
(私は聞いたことはないが、理論的に否定できなければ存在するのだろう)、
現実の我々が日常接する集合(大学学部レベルで(それ以上は知らず))は、
∈−順序を認めて、素朴集合論のベン図が描けるものに限定して、良いのではないだろうか?(^^
参考
https://ja.wikipedia.org/wiki/%E6%95%B4%E7%A4%8E%E9%96%A2%E4%BF%82
整礎関係
(抜粋)
モストウスキーの崩壊補題 (Mostowski collapse lemma) によれば、集合要素関係 (set membership) は普遍的な整礎関係である。
つまり、クラス X 上の集合的な整礎関係 R に対し、クラス C が存在して、(X, R) が (C, ∈) に同型となる
https://ja.wikipedia.org/wiki/%E3%83%A2%E3%82%B9%E3%83%88%E3%83%95%E3%82%B9%E3%82%AD%E5%B4%A9%E5%A3%8A%E8%A3%9C%E9%A1%8C
モストフスキ崩壊補題
以上
46(2): 132人目の素数さん [sage] 2019/09/11(水) 19:21:47.16 ID:h4/yIPnA(6/12) AAS
>>30
>我々の通常接する素朴集合論に近い議論では、
>”x ∈ y → x ⊂ y ”を認めた方が良い
こりゃまたヒドイ・・・
>>31
>我々が通常扱う集合は、
>超限帰納法も適用可の場合が多く、
>∈−順序が成立つとして良い
そんなわけないだろ
>∈−順序が成立つ場合は、
>”x ∈ y → x ⊂ y ”成立
「∈ がその上で整列順序になる集合」
って順序数だろ
いつどこで誰が
「一般の集合が順序数になる」
と証明したんだ?
もしかして、まだ
「選択公理から、どんな集合も整列順序がつけられる
だからどんな集合も∈に関する整列順序集合だ!」
とかトンチンカンな勘違いしてるのか?
52(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/11(水) 20:45:44.41 ID:IlUCyPH9(8/9) AAS
(>>30-31)
筑波大 坪井先生の数理論理学IIをベースに考えてみよう
P5 公理的集合論「x ∈ y の直観的な意味は,もちろん元x が集合y に属することであるが,x も一つの集合だと考える.」
なので、元xを、ベン図の点で表わす必要ないよね
おサルのベン図はしらんけどなw(^^;
アホなおサルw
(参考)
http://www.math.tsukuba.ac.jp/~tsuboi/und/14logic3.pdf
数理論理学II Akito Tsuboi 筑波大
55(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/11(水) 21:00:56.13 ID:IlUCyPH9(9/9) AAS
(>>30-31)
> 5)∈−順序は、推移的なので、xの任意の元 u ∈ x が成立つと、x ∈ y → u ∈ y成立(∵推移性より)
> だから、この場合は”x ∈ y → x ⊂ y ”成立
∈−順序は、推移的なので、
u ∈ x ∈ y なら
三重丸を描けば良い
一番内側がu、中間がx、一番外がy
それをベン図で解釈すれば、
u ⊂ x ⊂ y
それで、xの元である集合uにおいて、
その元が1点集合たち u1,u2,・・・,un ∈uだったとすれば
一番内側の丸のuの中に、u1,u2,・・・,un達を描く。それは1点で表現しても良い(^^
ベン図の包含関係から
u1,u2,・・・,un ∈xであり
u1,u2,・・・,un ∈yである
これ即ち、∈−順序の推移性そのものでしょ(^^;
おサル、しっかり踊れよ by サル回しのスレ主より w(^^;
58(1): 132人目の素数さん [] 2019/09/11(水) 22:26:50.31 ID:9NZxnffP(4/6) AAS
>>36
>・>>30での、筑波大 坪井先生
> 公理的集合論「x ∈ y の直観的な意味は,もちろん元x が集合y に属することであるが,x も一つの集合だと考える」
> (”元x も一つの集合だと考える”とすると、直感的には、x ∈ y → x ⊂ y だろうと)
相変わらず妄想が激しいなw
書かれていないことまで自分勝手に妄想してる
これは数学以前、病気
だから言ってるだろ
早く病院逝って妄想症を治療してもらえと
5ちゃんなんかやってる場合じゃねーぞサル
132: 132人目の素数さん [sage] 2019/09/14(土) 07:42:09.51 ID:VYIPOabR(3/30) AAS
>>30
>”元x も一つの集合だと考える”とすると、x ∈ y → x ⊂ y だろうと
>しかし、ZFC公理系から導けると思って、トライしたが、残念ながらできなかった(^^;
>(そういう文典も探したが、見つけられなかった)
ZFCから導けるわけないw
反例{{{}}}が存在するからwww
>しかし、我々の通常接する素朴集合論に近い議論では、
>”x ∈ y → x ⊂ y ”を認めた方が良いという結論に至った
馬鹿丸出し
素朴集合論でも{{{}}}は集合
つまり、ニワトリは根本的に間違ってるwww
ニワトリは死んだ!!!
貴様には数学は到底無理だからもう数学板に書くな 馬鹿めw
153(3): 132人目の素数さん [sage] 2019/09/14(土) 16:01:13.98 ID:VYIPOabR(14/30) AAS
>>150-152
ニワトリ 破滅への道 ?
>> ニワトリの発言
> 他者の発言
1.現スレで、前スレ845の自爆発言を蒸し返されるw >>10-11
2.さらに、別の人に1)2)を再度否定されるww >>21
3.ニワトリ、2)については前スレ865で撤回したというも
1)については言い張り続ける再自爆発言www >>30
>>うん、それね、おれ間違っているね(^^;
>>まず、上記2)は、正則性公理から反例 x not∈ x
>>(x ⊂ xであるにも関わらす)が出るから間違い
>>(それ以外にも、反例はあるな。後述)
>>では、上記1)は、どうだろうか?
>>公理的集合論
>>「x ∈ y の直観的な意味は,もちろん元x が集合y に属することであるが,
>> x も一つの集合だと考える.」
>> ”元x も一つの集合だと考える”とすると、x ∈ y → x ⊂ y だろうと
>> しかし、ZFC公理系から導けると思って、トライしたが、残念ながらできなかった(^^;
>>(そういう文典も探したが、見つけられなかった)
>> しかし、我々の通常接する素朴集合論に近い議論では、
>> ”x ∈ y → x ⊂ y ”を認めた方が良いという結論に至った
4.すかさずトンチンカン発言をつっこまれるw >>46
>>∈−順序が成立つ場合は、”x ∈ y → x ⊂ y ”成立
>「∈ がその上で整列順序になる集合」って順序数だろ
>いつどこで誰が「一般の集合が順序数になる」と証明したんだ?
154(3): 132人目の素数さん [sage] 2019/09/14(土) 16:14:55.86 ID:VYIPOabR(15/30) AAS
>>153
ニワトリ 破滅への道 ?
>> ニワトリの発言
> 他者の発言
3. ニワトリ 前スレ845の1)について見当違いな理由による正当化発言w >>30-31
(1) まず順序数について成り立つことを述べる (正しいのはここだけw)
>>1)二つの集合A,Bで、A ∈ B → A ⊂ B
>>「基本的な考え方は,∈ がその上で整列順序になる集合たちのクラスを
>>上手に定義して,それに属する集合を順序数として定義すること」
>>(要するに、∈−順序な)
>>∈−順序は、推移的なので、xの任意の元 u ∈ x が成立つと、x ∈ y → u ∈ y成立(∵推移性より)
>>だから、この場合は”x ∈ y → x ⊂ y ”成立
(2) で、ここでなぜか一般の集合も順序数だといいはるトンデモ発言w
>>で、我々が通常扱う集合は、超限帰納法も適用可の場合が多く、∈−順序が成立つとして良い
>> ∈−順序が成立つ場合は、”x ∈ y → x ⊂ y ”成立
>>36
>>∈−順序を認めないと、超限帰納法が適用困難になる
(3) さらにベン図を持ち出す醜態
>>なお、”x ∈ y → x ⊂ y ”を認めないと、素朴集合論のベン図に反例が出る
>>つまり、x ∈ yであるにも関わらず、xのある元 u ∈ x で、
>>u not∈ y となると、素朴集合論のベン図が描けないw(^^;
>>(∈−順序を仮定しないとどうなるか? 上記のように、分からんかった(^^;
>>36
>>現実の我々が日常接する集合(大学学部レベルで(それ以上は知らず))は、
>>∈−順序を認めて、素朴集合論のベン図が描けるものに限定して、良いのではないだろうか?(^^
4.すかさずトンチンカン発言をつっこまれるw >>46
>>∈−順序が成立つ場合は、”x ∈ y → x ⊂ y ”成立
>「∈ がその上で整列順序になる集合」って順序数だろ
>いつどこで誰が「一般の集合が順序数になる」と証明したんだ?
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.048s