[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
195(1): 132人目の素数さん [sage] 2019/09/15(日) 08:23:58.94 ID:qglvvszf(1/2) AAS
>>193
偶数の集合 = {2} = {{1}}
1∈{1}⊂偶数の集合
スレ主によると
1∈偶数の集合
202(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/15(日) 10:20:21.72 ID:NNU+uf1a(9/16) AAS
>>195
(引用開始)
偶数の集合 = {2} = {{1}}
1∈{1}⊂偶数の集合
スレ主によると
1∈偶数の集合
(引用終り)
素朴集合論のロジックと、公理的集合論のロジックとを、
意図して混用しているね(まあ、おれもやっているけどねw(^^; )
素朴集合論のロジックでは、
2はアトムであって、集合ではないよ
>>196
>s⊂N s⊂N2 だが、s⊂N'ではない
「包含関係は順序関係」(下記)なので
s⊂N2⊂N’なので、下記の推移律から
s⊂N’成立
QED
(^^;
(参考)
https://wiis.info/math/set/set/subset-is-ordering-relation/
ワイズ
包含関係は順序関係 2019年1月20日
(抜粋)
要旨:包含関係は反射律、推移律、反対称律を満たす順序関係です。
包含関係⊂は以下の性質を満たします。
命題(包含関係は順序関係)
任意の集合X,Y,Zについて以下が成り立つ。
(a) X⊂X
(b) (X⊂Y ∧ Y⊂Z) ⇒ X⊂Z
(c) (X⊂Y ∧ Y⊂X) ⇒ X=Y
性質(a)は、任意の集合は自身の部分集合であることを意味します。包含関係が満たすこのような性質を反射律(reflexive law)と呼びます。
性質(b)は、XがYの部分集合であり、YがZの部分集合であるならば、XはZの部分集合であることを意味します。包含関係が満たすこのような性質を推移律(transitive law)と呼びます。
性質(c)は、XがYの部分集合であり、YがXの部分集合であるならば、XとYは等しい集合であることを意味します。包含関係が満たすこのような性質を反対称律(antisymmetric law)と呼びます。
包含関係がこれらの性質を満たすことは、包含関係が順序関係(ordering relation)と呼ばれる二項関係(binary relation)であることを意味します。
二項関係や順序関係については追って説明します。
包含関係は全順序関係ではない
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.040s