[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
138
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/14(土) 11:28:48.65 ID:QdZ5TU5n(7/19) AAS
>>137

つづき
以下、余談だがご参考まで(^^;

(>>67)
https://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A9%E3%83%B3%E3%83%BB%E3%83%8E%E3%82%A4%E3%83%9E%E3%83%B3%E5%AE%87%E5%AE%99
フォン・ノイマン宇宙
(抜粋)
定義
この累積的階層は順序数のクラスによって添え字付けられた集合Vαの集まりであり、特に、Vαは階数α未満の集合全てによる集合である。ゆえに各順序数 α に対して集合Vαが超限帰納法によって以下のように定義できる:
・V0は空集合, {}とする。
・各順序数 βに対して、Vβ+1はVβの冪集合とする。
・各極限順序数 λに対して、Vλは、次の和集合とする
この定義で重要なのは、ZFCのある式φ(α,x)で "集合xはVαに属する" ことを定義できることである。
クラスVは全てのV-階層の和、すなわち:

と定義される。
同じ定義だが、各αの階層を

と定義できる、ここで P(X)はXの冪集合のことである。
集合Sの階数はS ⊆ Vαとなる最小のαとも言える。
Vと集合論
ω を自然数全体の集合とすると、Vωは遺伝的有限集合全体の集合であり、無限公理の成り立たない集合論モデルである。Vω+ωはordinary mathematicsの宇宙であり、ツェルメロの集合論のモデルである。
κ が到達不能基数ならば、VκはZFCのモデルである。そして、Vκ+1はモース-ケリー集合論のモデルである。
V は二つの理由によって、"全ての集合による集合"とは異なるものである。第一に、これは集合ではない。各階層Vαがそれぞれ集合でも、その和であるVは真のクラスであるからだ。第二に、Vの要素は全て整礎集合に限られている。
正則性公理は全ての集合が整礎的であることを要求していて、だからZFCでは全ての集合がVに属する。
しかし、正則性公理を除いたり否定するような別の公理系を考えることも可能である(例えばen:Aczel's anti-foundation axiom)。
このような非整礎集合の集合論は一般的に採用はされていないが、研究する余地はある。

つづく
139
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/14(土) 11:29:17.40 ID:QdZ5TU5n(8/19) AAS
>>138
つづき

(>>92-93)
https://lemniscus.hatenablog.com/entry/20120616/1339838683#sec6-7
再帰の反復blog
2012-06-16
反復的集合観と公理的集合論
(抜粋)
整礎原理
自分自身を含んでいたり包含関係が循環することがないため、「∈」について順序関係が成立することになる。
つまり包含関係「∈」に基づく「より単純な集合」←→「より複雑な集合」という相対的な位置づけを与えることができる。しかも包含関係「∈」を内側にたどっていくと必ずどこかで終わるので、「より単純な集合」←→「より複雑な集合」のうち、「より単純な集合」の方向はどこかで終点に至る。
整礎原理の成り立つ集合世界では、もっとも単純な集合から始まってだんだん複雑な集合に向かっていくという整然とした秩序が存在する
(この秩序は集合の要素数の大小関係とは異なる。たとえば0∈N∈{N})。
もっとも単純な集合は、要素を何も含まない空集合Φである。空集合Φはもちろん存在してほしい。
またこの空集合を元にして、{Φ},{{Φ,{{{Φ},{{{{Φ,…とか{Φ,{Φ,{Φ,{Φ},{{Φ},{Φ,{Φ},{{Φ,{{{Φ,…といった集合も存在していてほしい。

>>127
https://researchmap.jp/mu1x9nhhd-21099/?action=multidatabase_action_main_filedownload&download_flag=1&upload_id=40760&metadata_id=12105
公理論的集合論(情報科学特別講義 III) 矢田部俊介 2013 年 2 月 17 日 京都大学文学部大学院文学研究科
P21
4.4 推移的モデルとモストウスキ崩壊
集合論のモデルを扱う場合、一口にモデルと言ってもいろいろなモデルがある。多くの場合、モデルが ∈ に
関し推移的である(x ∈ y ∈ M ならば x ∈ M)であると証明が楽である。
(引用終り)
以上
142
(1): 132人目の素数さん [sage] 2019/09/14(土) 11:36:31.49 ID:VYIPOabR(6/30) AAS
>>138
>Vの要素は全て整礎集合

「整礎集合は全て推移的集合」と誤解する馬鹿www
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.038s