[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
124
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/13(金) 23:39:13.97 ID:Ct8Lh9wH(15/15) AAS
>>118 追加

まあ、ご参考
・フォン・ノイマン宇宙「整礎的集合から得られたでかい領域」
・構成可能宇宙「人間に扱える有限モデルに行き着く領域」
下記でも,見て下さい

(参考)
https://www.practmath.com/universe/
実用的な数学を
2019年4月26日 投稿者: TAKAN
宇宙 Universe
(抜粋)
目次
・議論領域「宇宙の本質に当たる概念で、より広い意味」
・グロタンディーク宇宙「集合論で作れる最大の大きさ」
・フォン・ノイマン宇宙「整礎的集合から得られたでかい領域」
・構成可能宇宙「人間に扱える有限モデルに行き着く領域」

フォン・ノイマン宇宙 Von Neumann
|| 直観でわかるものを全部集めてみました
これは『順序数』基準で作られた「宇宙」になります。
『順序数』由来なんで、かなり直観に近いです。
「順序数」で作られてるんで、
作られ方は基本的に『順序数』と一緒です。
初期値はいつもの『空集合』。
V_0=Φ
『順序数』由来なんで『宇宙 V 』はクラスになります。
それも「真のクラス」です。集合じゃありません。
ただ、その要素になる『 V_α 』は集合です。
定義自体が『整礎的集合』なんで、ちゃんと中身が全部わかります。

構成可能宇宙 Costructible
|| 人間が扱えるものだけ集めてみました
恐らく考え得る限り『最小の宇宙』がこれ。
基本は↑の「フォン・ノイマン宇宙」と同じで、
2 番目の「後者」の規則に条件が加わっています。
その制約の本質が『人間に扱えるように』という感じ。

『後者』について「フォン・ノイマン宇宙」と違う点は、

これでどうして人間に扱える程度になるかは、別記事で。
ちょっとどころじゃない長さになるので小分けになるかと。
雰囲気だけ伝えるとするなら、
濃度が決まってるものの内側に納まってる上で、
更には『有限』の長さで定義できることが確定している、みたいな。
(レーヴェンハイム・スコーレムの定理などが理由)
だから、人間に扱える程度の大きさになっている、みたいな感じ。
いわゆる「帰納的に定義できる」とか、そんなです。
通例では、『構成可能宇宙』は「 L 」と表されます。
125
(1): 132人目の素数さん [sage] 2019/09/13(金) 23:41:35.18 ID:QEVZazxA(17/18) AAS
>>124
自分自身理解できない文章コピペして誤魔化さずに
{{{}}}が推移的でない集合であることを理解しようね
アホのニワトリ君wwwwwww
127
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/14(土) 00:12:55.76 ID:QdZ5TU5n(1/19) AAS
>>124 追加

過去スレで、矢田部俊介先生の「公理論的集合論(情報科学特別講義 III)」も取り上げた記憶があるね〜(^^
おもしろいね〜w
https://researchmap.jp/ytb/
矢田部俊介
https://researchmap.jp/mu1x9nhhd-21099/
資料公開
タイトル 公理論的集合論
カテゴリ 講義資料
概要 お茶の水女子大学2012年度集中講義「情報科学特別講義III」(2013年2月18日?22日)授業要旨
https://researchmap.jp/mu1x9nhhd-21099/?action=multidatabase_action_main_filedownload&download_flag=1&upload_id=40760&metadata_id=12105
公理論的集合論(情報科学特別講義 III)
矢田部俊介 ?
2013 年 2 月 17 日
? 京都大学文学部大学院文学研究科
P21
4.4 推移的モデルとモストウスキ崩壊
集合論のモデルを扱う場合、一口にモデルと言ってもいろいろなモデルがある。多くの場合、モデルが ∈ に
関し推移的である(x ∈ y ∈ M ならば x ∈ M)であると証明が楽である。しかし、そうである保証はない。
例えば、集合が urelements を含んでいる場合を考えよう。u が urelemant であるとは、u 自身は集合では
ないが、他の集合は u を含むことができるもののことをいう。例えば、{u} は集合となる。この urelement は
いかなる集合も元として含まないため、空集合のようなものであるが、空集合ではない。また、集合ではない
ため、u 自身は集合として集合論の宇宙に含まれることはない。
しかし、このような推移的でないモデルが与えられたとき、モストウスキ崩壊 と呼ばれる方法により、モデ
ルがある条件を満たせば、それと同等だが推移的なモデルを構成する方法がある。本節ではそれを紹介する。
まず、そのために用語を紹介しよう。以後、A を集合もしくはクラスとする。これから、A 上の関係 R を考
え、<A, R> が推移的でないような ZFC のモデルであるとき、それに同型だが推移的なモデルを構成する事を
目標とする。

定理 4.27 (モストウスキ崩壊定理) A 上の関係 R を、整礎で、集合もどきで外延的だと仮定する。このとき、
推移的なクラス M と、単射な同型写像 G : <A, R> → <M,∈> を定義することができる。また、M は一意に
定まる。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.043s