[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 http://rio2016.5ch.net/test/read.cgi/math/1568026331/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
755: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/09(水) 11:15:54.73 ID:nHmzRvjt >>718 >正規部分群の手前の変換σ-1・H・σ自身の理解が不正確でした >みなさんに、教えて頂きました >ありがとう(^^ 変換σ-1・H・σは、共役変換というんだけど(^^ 下記の共役類wikipediaに詳しい ((編集されて変わることがあるので)スナップショットとして抜粋コピペするけど文字化けご容赦。原文リンク見た方が良いだろう) 元で書くと、σ-1・h・σだけど、積演算(・)が可換(アーベル)だと、 σ-1・h・σ=σ-1・σ・h=hなので 高校数学の範囲では可換ばかりだから、”何が、そんなにうれしいのか!?”となるのよw(^^ 大学数学で非可換を勉強すると分かる。群論を、これからやる人、いまやっている人は、”共役”を理解しておくといい https://ja.wikipedia.org/wiki/%E5%85%B1%E5%BD%B9%E9%A1%9E 共役類 (抜粋) とくに群論において、任意の群は共役類(きょうやくるい、英: conjugacy class)に分割できる。同じ共役類の元は多くの性質を共有し、非アーベル群の共役類の研究はそれらの構造のたくさんの重要な特徴を明らかにする[1][2][要ページ番号]。 定義 G を群とする。G の2つの元 a と b が共役 (きょうやく、conjugate) であるとは、G の元 g が存在して b = g^-1ag を満たすことである[注釈 1]。ここで元 g^-1ag を ag のように表すこともある[3]。 共役性は同値関係であり、したがって G を同値類に分割する[注釈 2]ことが直ちに示せる。G の元 a を含む同値類 aG = { ag | g ∈ G } は a の共役類 (conjugacy class) と呼ばれる[4]。群 G の共役類が C1, …, Ch であるとき数 k(G) := h を類数[訳語疑問点] (class number) と呼ぶ[4]。 一般に、対称群 Sn の共役類の数は n の分割の数に等しい。これは各共役類が、 {1, 2, ..., n} の元の並び替えを除いて、{1, 2, ..., n} のちょうど 1 つの分割を巡回置換(英語版)の集まりと見做したものに対応するからである。 立方体の(自明でない)回転(英語版)は、(面ではなく立体としての)対角線に関する置換として特徴づけることができるが、これも共役変換として記述することができる。 ユークリッドの運動群はユークリッド空間における対称性の共軛変換(英語版)によって調べられる。 つづく http://rio2016.5ch.net/test/read.cgi/math/1568026331/755
756: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/09(水) 11:16:25.54 ID:nHmzRvjt >>755 つづき 性質 ・G の 2 元 a と b が共役ならば、同じ位数をもつ。より一般に、a についてのすべてのステートメントは b = g^-1ag についてのステートメントに翻訳できる、なぜならば写像 φ(x) = g^-1xg は G の内部自己同型だからである。 ・G の元 a に対して、 {a} が共役類であることと a が中心 Z(G) に属することは同値である。 ・有限群の共役類の元の数は群の位数を割り切る。より精密には共役類 aG の元の数 |aG| は a の G における中心化群 CG(a) = { g ∈ G | ga = ag } の指数 [G : CG(a)] に等しい[4]。これは共役作用に関する軌道・固定群定理による。 ・a と b が共役であれば、それらのベキ ak と bk も共役である[注釈 3]。したがって k 乗をとることは共役類上の写像を与え、どの共役類がその原像にあるかを考えることができる。例えば、対称群において、type (3)(2) (3-cycle と 2-cycle) の元の平方は type (3) の元であり、それゆえ (3) の power-up 類の 1 つは類 (3)(2) である。類 (6) は別の類である。 ・群 G の位数が奇数ならば |G| ≡ k(G) (mod 16) が成り立つ (W. Burnside)[5]。 ・有限群 H, K に対して k(H × K) = k(H) × k(K) が成り立つ[6]。 ・有限群 G とその正規部分群 N に対して [G : N]^-1 k(N) <= k(G) <= k(G/N) k(N) が成り立つ[7]。 ・自然数 h が与えられたとき、k(G) = h となる有限群 G は同型を除いて高々有限個しかない (E. Landau, 1903)[8]。 つづく http://rio2016.5ch.net/test/read.cgi/math/1568026331/756
757: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/09(水) 11:16:41.86 ID:nHmzRvjt つづき 類等式 G が有限群であれば、群の任意の元 a に対して、a の共役類の元は中心化群 CG(a) の剰余類と 1 対 1 の対応にある。このことは次のことを観察することによってわかる。同じ剰余類に属する任意の 2 元 b, c (したがって中心化群 CG(a) のある元 z に対して b = zc)は a を共役するときに同じ元を生じる: b^-1ab = (zc)^-1a(zc) = c^-1z^-1azc = c^-1ac. したがって a の共役類の元の数は G における中心化群 CG(a) の指数 [G : CG(a)] である。したがって各共役類の元の数は群の位数を割り切る。 さらに、各共役類からひとつずつ代表元 xi を選べば、共役類の非交性から |G| = ?i |xiG| = ?i [G : CG(xi)]がいえる。中心 Z(G) の各元はそれ自身だけを含む共役類をなすことに注意すれば、類等式 (class equation) を得る[4]: |G| = |Z(G)| + ?i [G : CG(xi)] ただし和は中心に含まれない各共役類からの代表元を渡る。 群の位数 |G| の約数の知識は中心や共役類の元の数についての情報を得るためにしばしば使うことができる。 つづく http://rio2016.5ch.net/test/read.cgi/math/1568026331/757
758: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/09(水) 11:17:21.83 ID:nHmzRvjt >>757 つづき 応用例 非自明な有限 p-群 P(つまり位数 pn の群、ただし p は素数で n > 0)を考えよう。類等式を使うと 「すべての非自明な有限 p-群は非自明な中心をもつ」 ことが証明できる[9]。 証明:P の任意の共役類の元の数は P の位数を割らなければならない。よって中心に含まれていない各共役類 Ci の元の数もまたあるベキ pki(ただし 0 < ki < n)であることが従う。すると類等式から pn = |P| = |Z(P)| + ?i pki となる。ゆえに p は |Z(P)| も割らなければならず、したがって |Z(P)| > 1 であることがわかる。 共役集合と共役部分群 群 G の部分集合 S (S は部分群である必要はない)と g ∈ G に対して Sg = g^-1Sg = { g^-1sg | s ∈ S } を S の g による共役集合という[10]。SG を部分集合 S の群 G における共役集合からなる集合とする。 次の定理はよく使われる。 G の部分集合 S が与えられたとき、SG の元の数は G における S の正規化群 NG(S) の指数に等しい[4]: |SG| = [G : NG(S)]. これは G の元 g と h に対して Sg = Sh であることと gh^-1 が NG(S) の元であること??つまり g と h が NG(S) を法として等しいこと??の同値性から従う。 この公式は共役類の元の数に対する前に与えられたものを一般化することに注意しよう(S = {a} とせよ)。 上記は G の部分群について話すときに特に有用である。部分群のなす集合は共役部分群へ分割できる。共役部分群は同型であるが、同型な部分群が共役であるとは限らない。たとえば、アーベル群は同型な 2 つの異なる部分群をもつかもしれないが、それらは決して共役でない。 一方でシロー部分群は互いに共役である(シローの定理)。また、部分群 H がそのすべての共役部分群と一致することは部分群は正規部分群であることに他ならない。 つづく http://rio2016.5ch.net/test/read.cgi/math/1568026331/758
759: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/09(水) 11:17:44.41 ID:nHmzRvjt >>758 つづき 共役作用 任意の 2 元 g, x ∈ G に対して g.x = gxg^-1 と定義すれば、G の G 上の群作用になる。この作用の軌道は共役類であり、与えられた元の固定部分群はその元の中心化群である[4]。 同様に、G のすべての部分集合からなる集合への、あるいは G のすべての部分群からなる集合への、G の群作用を g.S = gSg^-1 と書くことで定義できる。 幾何学的解釈 弧状連結位相空間の基本群における共役類は自由ホモトピーのもとでの自由ループ(英語版)の同値類と考えることができる。 注釈 2.^これが意味するのは群の各元はちょうど1つの共役類に属し、類 aG と bG が等しいことと a と b が共役であることは同値であり、そうでなければ互いに素である。 3.^ 証明:a = g^-1bg であれば、ak = (g^-1bg)(g^-1bg)...(g^-1bg) = g^-1bkg。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1568026331/759
761: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/09(水) 13:25:04.58 ID:nHmzRvjt メモ https://www.nikkei.com/article/DGXMZO40853860U9A200C1X20000/ プリファード・ネットワークス 深層学習の応用容易に 日経優秀製品・サービス賞 2019/2/4 13:30 リサーチャー 得居誠也氏 「なんか使いにくいよね」。深層学習のフレームワーク「Chainer(チェイナー)」を開発したきっかけは、会社で同僚と交わした何気ない雑談だった。2015年、当時27歳だった。 フレームワークは、深層学習のプログラムを書くのに利用する。チェイナーを開発するまで一般的だったものは、自然言語処理では使いにくかった。同僚との雑談で浮かんだヒントを基に、休みを活用して開発に着手。幸いにもバグなど落とし穴がなく、基礎となる部分のコードを書き上げるまでは10日ほど。 チェイナーの名前は、プログラムを書くとデータが鎖状につながるため、岡野原大輔副社長のアイデアでつけられた。 1カ月後の15年6月に「チェイナー」として発表し、誰でも使えるソフトウエアとして公開した。チェイナーの利用者が増えるとともに、利用者がよりよく改良してくれる流れができればと考えた。グーグルやフェイスブックなど、米国のネット大手より先んじたことで、PFNが持つ技術力などを認知してもらえるきっかけにもなった。 チェイナーはAIのシステム開発でよく使われている「パイソン」というプログラミング言語の力を最大限に活用した。プログラミングが得意な人ばかりではなく、数学や統計学を学んできた人もいる。プログラミングに不慣れでもパイソンさえ理解していれば、深層学習のプログラムを書けるようにすることで、アイデアを落とし込みやすく、研究を早く進められるようにした。 15年の公開以降、日本だけでなく海外も含めて、多くのエンジニアがチェイナーを使ってくれていることに感謝している。先日、インドにいる大学生から質問のメールが送られてきて、遠く離れた国の人も愛用してくれているのが、うれしかった。 今、取り組んでいるのは高速化だ。深層学習の研究で扱うデータの規模が大きくなっているほか、画像処理半導体(GPU)などハードウエアの性能の進化も著しい。どれだけ大規模で高速に学習できるかが問われるようになっている。他のフレームワークの先を行くよう改良に全力をそそいでいる。 http://rio2016.5ch.net/test/read.cgi/math/1568026331/761
762: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/09(水) 13:26:25.23 ID:nHmzRvjt >>760 >> 基本的に信用できません。 >ここ、正確には、正しい内容と間違った内容が混在している、だね。 >まあ、当然のことで、内容が正しいか否かは己で判断して下さい、ということ。 おっちゃん、どうも、スレ主です。 フォロー、ありがとう(^^ http://rio2016.5ch.net/test/read.cgi/math/1568026331/762
763: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/09(水) 13:32:03.17 ID:nHmzRvjt >>761 youtube 得居誠也経歴(自己紹介より) 学部東大数学科→修士 東大情報系 https://www.youtube.com/watch?v=dkAzjRldJn0 得居誠也「AIを書く」ー高校生のための東京大学オープンキャンパス2017 模擬講義 706 回視聴?2018/10/24 東大TV / UTokyo TV チャンネル登録者数 1.22万人 東大TV( http://todai.tv/ )で公開中の一部のコンテンツをこちらのYouTubeチャンネルでもご覧いただけます。 01:16 自己紹介 03:11 深層学習の様々な例 13:52 AIとゲーム 24:03 汎用AIと特化型AI 34:47 深層学習の研究 ★高校生のための東京大学オープンキャンパス https://www.u-tokyo.ac.jp/opendays/in... https://www.youtube.com/redirect?redir_token=5pSXQBaD9Y2QdxLwOKbQE3J071h8MTU3MDY4MTY2NkAxNTcwNTk1MjY2&event=video_description&v=dkAzjRldJn0&q=https%3A%2F%2Fwww.u-tokyo.ac.jp%2Fopendays%2Findex.html http://rio2016.5ch.net/test/read.cgi/math/1568026331/763
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.035s