[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
83: 132人目の素数さん [sage] 2019/09/13(金) 06:47:58.88 ID:QEVZazxA(1/18) AAS
>>80
>∈−順序は、公理的集合論ZFCの目玉の重要キーワードでしょ?
いいやw
おまえ日本語が読めない馬鹿だろw
>フォン・ノイマン宇宙では、∈−順序が成り立ち、∈が推移律を保つ
>推移律:x∈y∈z で、ここでxはyの任意の元として、
>xに対し∀x∈zが成立→即y⊂z成立 かつ x⊂z成立
>これで(フォン・ノイマン宇宙で)、ベン図に反例はない
いいやw
おまえ日本語が読めない馬鹿だろw
フォン・ノイマン宇宙自体は推移的であっても
フォン・ノイマン宇宙の全ての集合が推移的なわけではない
もしフォン・ノイマン宇宙の全ての集合が推移的なら
フォン・ノイマン宇宙は順序数の全体ということになるが
そんな馬鹿なことはもちろんないw
例えば{{{}}}は明らかに集合であることが証明できるが
これは推移的ではないw
{}∈{{}} {{}}∈{{{}}} しかし ¬({}∈{{{}}})
まず、x∈y⇒x⊂y となるのはyが推移的集合の場合
そして∀x,y∈S.x∈y⇔x⊂y となるのはSが順序数の場合だけ
※Sが順序数であるとき、その時に限り、
SだけでなくSの要素S'、S'の要素S''とたどった集合
すべてが推移的集合になる)
84(2): 132人目の素数さん [sage] 2019/09/13(金) 06:48:40.52 ID:QEVZazxA(2/18) AAS
>>81
>∈−順序は、公理的集合論ZFCの目玉の重要キーワードでしょ?
いいやw
おまえ日本語が読めない馬鹿だろw
>フォン・ノイマン宇宙では、∈−順序が成り立ち、∈が推移律を保つ
>推移律:x∈y∈z で、ここでxはyの任意の元として、
>xに対し∀x∈zが成立→即y⊂z成立 かつ x⊂z成立
>これで(フォン・ノイマン宇宙で)、ベン図に反例はない
いいやw
おまえ日本語が読めない馬鹿だろw
フォン・ノイマン宇宙自体は推移的であっても
フォン・ノイマン宇宙の全ての集合が推移的なわけではない
もしフォン・ノイマン宇宙の全ての集合が推移的なら
フォン・ノイマン宇宙は順序数の全体ということになるが
そんな馬鹿なことはもちろんないw
例えば{{{}}}は明らかに集合であることが証明できるが
これは推移的ではないw
{}∈{{}} {{}}∈{{{}}} しかし ¬({}∈{{{}}})
まず、x∈y⇒x⊂y となるのはyが推移的集合の場合
そして∀x,y∈S.x∈y⇔x⊂y となるのはSが順序数の場合だけ
※Sが順序数であるとき、その時に限り、
SだけでなくSの要素S'、S'の要素S''とたどった集合
すべてが推移的集合になる)
85(1): 132人目の素数さん [sage] 2019/09/13(金) 06:53:24.72 ID:QEVZazxA(3/18) AAS
>>81
>数学者って人種は「おまいら高校の極限はゴマカシなんだ」みたいなのスキでね
>だから、もしベン図がゴマカシ(不正確と言ってもいい)だったら、
>きっとそういう人が出てくるはず
>「y∈zとしても、yの元で、zに含まれない元が存在するんだ。
> だから、ベン図に反例がある(あるいは描けない)」
>みたいなことをいう人がね
>でも、そんな人はおらんでしょ
ベン図は包含関係⊂しか表せない
要素∈の推移性なんて表しようがないw
したがって問題になりようがない
おまえは正真正銘の白痴か?w
{{{}}}は「∈は推移的!」という貴様の嘘に対する決定的反例w
おまえは{}、{{}}、{{{}}}の三者を
どうベン図で書くつもりだ?
書いて見せてもらおうかw
86: 132人目の素数さん [sage] 2019/09/13(金) 06:56:38.23 ID:QEVZazxA(4/18) AAS
>>82
数学板名物、ニワトリ集合論www
>1)二つの集合A,Bで、A ∈ B → A ⊂ B
>2)二つの集合A,Bで、A ⊂ B → A ∈ B
>3)”A ∈ B → A ⊂ B” & ”A ⊂ B → A ∈ B”が成立つから、二つは同値
結論、集合=順序数
(ニワトリ曰く、「だって任意の集合は選択公理で整列可能だもん!」www)
87: 132人目の素数さん [sage] 2019/09/13(金) 06:58:17.96 ID:QEVZazxA(5/18) AAS
>>80
>おサルが二匹、踊ってくれるのか?
ニワトリ一羽、今日もトンデモ主張をコケコッコーw
さすが正規部分群を誤解する馬鹿だけのことはあるwww
88: 132人目の素数さん [sage] 2019/09/13(金) 07:14:05.39 ID:QEVZazxA(6/18) AAS
⊂に関しては、任意の集合X,Y,Zで
X⊂Y Y⊂Z ならば X⊂Z
がいえる
し・か・し
∈に関しては、任意の集合X,Y,Zで
X∈Y Y∈Z ならば X∈Z
とはいえない
反例 {{{}}}
{}∈{{}} {{}}∈{{{}}} しかし ¬({}∈{{{}}})
ニワトリ集合論から矛盾が導かれたw
99(2): 132人目の素数さん [sage] 2019/09/13(金) 19:04:20.78 ID:QEVZazxA(7/18) AAS
>>89
>”フォン・ノイマン宇宙の全ての集合が推移的なわけ”ですよね
これはヒドイwww
答えは否
最も簡単な反例{{{}}}は既にしめした
理解できない?頭悪すぎだろ?
>>91
>>おまえは{}、{{}}、{{{}}}の三者を
>>どうベン図で書くつもりだ?
>大中小の丸でいいでしょ
>三重丸で
>{}は小丸、{{}}は中丸、{{{}}}は大丸
これもヒドイwww
答えはこれまた否
{}⊂{{}} {}⊂{{{}}} はいいが
¬({{}}⊂{{{}}})だぞ
考えてる?脳味噌無いの?
100: 132人目の素数さん [sage] 2019/09/13(金) 19:04:55.99 ID:QEVZazxA(8/18) AAS
>>91
http://www.math.tsukuba.ac.jp/~tsuboi/und/14logic3.pdf
>以下では,集合論の公理を仮定する.
>定義18. 1. x が推移的である(Trans(x)) とは,
>∀y∀z(z ∈ y ∈ x → z ∈ x)
>となることである.
ニワトリは日本語も正しく読めないのか?
定義18の1は、
「集合xが推移的」
という言葉の意味を定義しただけ
どこにも
「全ての集合は推移的である」
なんて公理は設定してないw
ついでにいうと、これ、続きがあるぞ
>2. x が順序数である(Ord(x))とは,
>Trans(x) ∧ ∀y ∈ x(Trans(y))
>となることである.
>上の定義を言葉で述べると,
>「x が推移的とは x が ∈ に関して推移的なこと」,
>「x が順序数であるとは,x だけでなくその元もすべて推移的なこと」
>となる.
これもどこにも
「全ての集合は順序数である」
なんて公理は設定してないw
102(2): 132人目の素数さん [sage] 2019/09/13(金) 19:05:48.63 ID:QEVZazxA(9/18) AAS
ニワトリにはこっちのほうが分かりやすいか
http://eurekagap.up.seesaa.net/image/ordinals_and_cardinals.pdf
「Definition 1.2.1.
集合 x が推移的(transitive)であるとは,
∀v(v ∈ x → v ⊆ x)
となることである.
これは x の元の元もまた x に属しているということである.」
いっとくが∀v(v ∈ x → v ⊆ x)は公理ではない
∀v(v ∈ x → v ⊆ x)が成り立つ集合xを
推移的だといってるだけ
「Definition 1.2.2.
推移的かつ ∈ によって整列順序づけされる集合を
順序数(ordinal)とよぶ」
「α, β, γ, . . . などのギリシャ文字で順序数を表す.
また,α ∈ β を α < β と書き,
α ∈ β または α = βであることを
α ? β と書くことにする.
Lemma 1.2.7. 任意の順序数 α, β に対して α ? β ⇔ α ⊆ β.」
ほら、「任意の順序数 α, β に対して」とあるだろ
決して「任意の集合x,yに対してx ∈ y ⇔ x ⊂ y」なんて書いてないw
集合論のどの公理で
「任意の集合xは順序数である
つまり任意の集合xは推移的かつ ∈ によって整列順序づけされる」
なんて証明されるんだよw
選択公理とかいうなよ 笑われるからwwwwwww
114: 132人目の素数さん [sage] 2019/09/13(金) 22:26:07.31 ID:QEVZazxA(10/18) AAS
>>105
>賢いニワトリ
そう思ってる時点でニワトリはバカw
>>102はバカでも分かると思って引用してやったまでだが
書いてあることは筑波大の坪井氏のpdfと大して変わらん
要するにニワトリは言葉の定義を公理と勘違いする
大馬鹿っぷりを演じたまで
どこに
「すべての集合は推移的だ!」「すべての集合は順序数だ!」
とかいう公理がある思う馬鹿がいるかよw
115: 132人目の素数さん [sage] 2019/09/13(金) 22:28:47.35 ID:QEVZazxA(11/18) AAS
>>106
>賢いニワトリ
そう思ってる時点でニワトリはバカw
>>112
ニワトリは、集合が推移的とか順序数であるとかいう用語の定義を
「すべての集合は推移的でありしたがって順序数である」
と読み違える正真正銘の馬鹿だから
分かったつもりのワカランチンなんだな、これがwww
116: 132人目の素数さん [sage] 2019/09/13(金) 22:34:29.63 ID:QEVZazxA(12/18) AAS
集合論のどのテキストにも
「全ての集合は推移的である」とか
「全ての集合は順序数である」とか
いう嘘は書いてない
ニワトリは
「集合xが推移的であるとは・・・である」
「集合xが順序数であるとは・・・である」
という言葉の定義を、「公理」と読み違えるほどの
正真正銘の馬鹿野郎である
おそらく日本人ではなく朝鮮人だろうw
日本語が分かるならこんな馬鹿な読み間違いはしないw
117: 132人目の素数さん [sage] 2019/09/13(金) 22:37:31.46 ID:QEVZazxA(13/18) AAS
ニワトリは{{{}}}が集合でないと思ってるらしいw
(なぜなら推移的でもないし順序数でもないからw)
しかも{{}}⊂{{{}}}だと思うほどの白痴である
{}は{{{}}}の要素でないのだから
{{}}⊂{{{}}}なわけがないのは
小学生でもわかることだが
なんせ人間どころか哺乳類ですらない
鳥類のニワトリだから仕方ないwww
121: 132人目の素数さん [sage] 2019/09/13(金) 23:32:51.08 ID:QEVZazxA(14/18) AAS
>>118
>フォン・ノイマン宇宙Vの中に、"推移的"ではない、つまり、反例があるとね
お前、アホだろw
フォン・ノイマン宇宙Vが推移的であるからといって
Vの任意の要素である集合が推移的だとはいえない
一番簡単な例{{{}}}を示してやっただろw
{}∈{{}}、{{}}∈{{{}}} だが、¬({}∈{{{}}})
これが理解できないようじゃ、数学は絶対無理だから諦めろw
>おサルの集合論は、面白いな
全然面白くないよ
俺が挙げた反例なんか、
例えば阪大理学部数学科の1年坊主でも
三秒以内に思いつくねw
122: 132人目の素数さん [sage] 2019/09/13(金) 23:34:19.86 ID:QEVZazxA(15/18) AAS
>>118
>順序数は遺伝的に推移的な集合として定義される
しかし一般の集合は順序数どころか推移的集合でもないものがあるw
一番簡単な例{{{}}}を示してやっただろw
{}∈{{}}、{{}}∈{{{}}} だが、¬({}∈{{{}}})
これが理解できないようじゃ、数学は絶対無理だから諦めろw
123: 132人目の素数さん [sage] 2019/09/13(金) 23:39:05.12 ID:QEVZazxA(16/18) AAS
ああ、そうそう
フォン・ノイマン宇宙 Vや 構成可能宇宙 L は
遺伝的に推移的なクラスではない
(順序数全体のクラスOnは遺伝的に推移的なクラス)
125(1): 132人目の素数さん [sage] 2019/09/13(金) 23:41:35.18 ID:QEVZazxA(17/18) AAS
>>124
自分自身理解できない文章コピペして誤魔化さずに
{{{}}}が推移的でない集合であることを理解しようね
アホのニワトリ君wwwwwww
126(2): 132人目の素数さん [sage] 2019/09/13(金) 23:46:16.98 ID:QEVZazxA(18/18) AAS
{{{}}}は推移的でないから
{{}}∈{{{}}}だが、¬({{}}⊂{{{}}})である
ここまで簡単な例でニワトリの馬鹿主張を
木端微塵に打ち砕けるのは実にキモチがイイw
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 2.425s*