[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
906: Mara Papiyas ◆y7fKJ8VsjM [] 2019/10/17(木) 05:27:10.76 ID:448PbhX4(1/12) AAS
>>900
>??
貴様は肝心なところを読んでない
自己同型! なぜ読まない?
貴様の引用したHPにもチャンと
同型写像について書かれてる
なぜ引用しない? 馬鹿かw
907: Mara Papiyas ◆y7fKJ8VsjM [] 2019/10/17(木) 05:31:26.58 ID:448PbhX4(2/12) AAS
>>904
1の5乗根を追加した体を基礎体としても
ガロア群がF_20となる場合がいかなるものか
についてはハイレベル数学人に任せるw
私の目的はあくまで馬鹿のローレベルな間違いを指摘することにあるw
908: Mara Papiyas ◆y7fKJ8VsjM [] 2019/10/17(木) 05:35:43.66 ID:448PbhX4(3/12) AAS
馬鹿はウマに食わせるほど数学書を買っても
ロクに読みもせず、読んだとしても
結果を覚えるだけで証明の論理を追わないから
いつまでたっても数学が理解できない
悪いことは云わない 数学は諦めろ
数学書はみな売っちまえ
貴様がやるべきことは断捨離だw
909(2): Mara Papiyas ◆y7fKJ8VsjM [] 2019/10/17(木) 06:14:32.44 ID:448PbhX4(4/12) AAS
円分拡大の自己同型
原始5乗根をζで表す
同型写像として^2をとる
ζ、ζ^2、ζ^3、ζ^4
↓^2
ζ^2、ζ^4、ζ^6=ζ、ζ^8=ζ^3
↓^2
ζ^4、ζ^3、ζ^2、ζ
↓^2
ζ^3、ζ、ζ^4、ζ^2
↓^2
ζ、ζ^2、ζ^3、ζ^4
逆写像は^3
ζ、ζ^2、ζ^3、ζ^4
↓^3
ζ^3、ζ^6=ζ、ζ^9=ζ^4、ζ^12=ζ^2
↓^3
ζ^4、ζ^3、ζ^2、ζ
↓^3
ζ^2、ζ^4、ζ、ζ^3
↓^3
ζ、ζ^2、ζ^3、ζ^4
ちなみに^4は、自身が逆写像でもある
ζ、ζ^2、ζ^3、ζ^4
↓^4
ζ^4、ζ^8=ζ^3、ζ^12=ζ^2、ζ^16=ζ
↓^4
ζ、ζ^2、ζ^3、ζ^4
もちろん^1(恒等写像)は単位元
910: Mara Papiyas ◆y7fKJ8VsjM [] 2019/10/17(木) 06:21:34.68 ID:448PbhX4(5/12) AAS
些細なことですが
>>905
氏はつけなくてもいいよ
例えば数学者について述べるとき、いちいち氏はつけないが
それを無礼だと咎める人はまあいない
私は別に数学者ではないが、名前に関しては
数学の慣習に沿って語っていただいて全然かまわない
931: Mara Papiyas ◆y7fKJ8VsjM [] 2019/10/17(木) 18:58:50.90 ID:448PbhX4(6/12) AAS
>>914
いちいちごもっとも
>>909みたいにアケスケに書けば
1→ζ→ζ^2→…→ζ^(n-1)→ζ^n=1
みたいなナイーブな認識が
円分体のガロア群に関しては
全然見当違いだと分かる
(クンマー拡大とは違うのだよw)
例えばφ12は4次式で
ζ=exp(2πi/12)cos(2π/12)+i*sin(2π/12)
とすれば
ζ,ζ^5,ζ^7,ζ^11
のみが解
ζ,ζ^5,ζ^7,ζ^11
↓^5
ζ^5,ζ^25=ζ,ζ^35=ζ^11,ζ^55=ζ^7
↓^5
ζ,ζ^5,ζ^7,ζ^11
ζ,ζ^5,ζ^7,ζ^11
↓^7
ζ^7,ζ^35=ζ^11,ζ^49=ζ,ζ^77=ζ^5
↓^7
ζ,ζ^5,ζ^7,ζ^11
ζ,ζ^5,ζ^7,ζ^11
↓^11
ζ^11,ζ^55=ζ^7,ζ^77=ζ^5,ζ^121=ζ
↓^5
ζ,ζ^5,ζ^7,ζ^11
これはクライン群で、巡回群ではないね
932(1): Mara Papiyas ◆y7fKJ8VsjM [] 2019/10/17(木) 19:00:54.86 ID:448PbhX4(7/12) AAS
>>915
>Mara Papiyasさんも勉強しながら書かれてる感じですが、
そうですね ツッコむために勉強してます(ひでぇ)
>スレ主さんとは違って自分の頭を通して書いているな
>というのが分かります。
そうですね そうでないとツッコめませんから(ひでぇ)
>「アーベル群とアーベル群の直積はアーベル群にしかならないだろう」
>とか、数学徒であれば誰でも気づくツッコミも入れてきます。
可解群の説明で「剰余群がアーベル群」とあるのを読んで
「じゃ、可解群はアーベル群じゃん」とかいいだすのは軽率な馬鹿
もちろん、S3はアーベル群じゃないから、
そこで気づかないとおかしい
>スレ主さんにはどうも半直積の概念がないように思えます。
そもそも、馬鹿は計算して確かめる癖がない
だから
「1の5乗根の原始根 ζ5を添加する拡大から、位数5の巡回群が出る」
なんてアホなこと書いちゃうんですわw
933: Mara Papiyas ◆y7fKJ8VsjM [] 2019/10/17(木) 19:02:15.79 ID:448PbhX4(8/12) AAS
>>916
>(スレ主は)まとまった理論が頭の中に構築されている感じがしません。
全くおっしゃる通り
あのね、工学屋は別にガロア理論なんて知らなくたって困りませんよ
代数学の基本定理だって、結論だけ知っときゃいいw
「n次方程式は、重解も含めて必ずn個の解がある」とかね
解は、数値解法でゴリゴリ求めればいい
馬鹿が粋がって「ガロア理論がー」とかいって初歩的な誤りを連発
しかも誤りを指摘されても決して認めずワケワカランな抗弁するから
イジりまくられる
知らないとか間違うとかいうのは恥じゃない(開き直るw)
間違いを認めず、知らないことを自覚せずに
知ってるかのごとき顔をしてウソ言い続けるのが
恥ずかしいんだよ
934(1): Mara Papiyas ◆y7fKJ8VsjM [] 2019/10/17(木) 19:02:55.63 ID:448PbhX4(9/12) AAS
>>919
>なんか、混乱していませんか?
おまえがなw
ぶっちゃけ「最小多項式」が分かってないだろw
wikipedia
最小多項式 (体論)
「α の最小多項式は
α を根として持つ F[x] の 0 でないすべての多項式のうち
次数が最小のモニック多項式である。」
(モニック多項式は最高次係数が 1 の一変数多項式)
「1の冪根の Q[x] における最小多項式は円分多項式である。」
935(1): Mara Papiyas ◆y7fKJ8VsjM [] 2019/10/17(木) 19:04:10.96 ID:448PbhX4(10/12) AAS
>>923
wikipediaの円分多項式のところを読め
φnを円分多項式とする
(x^12-1)
=φ1φ2φ3φ4φ6φ12
ζ=cos(2π/12)+i*sin(2π/12)とする
φ1=(x-1) 根は1
φ2=(x+1) 根はζ^6=-1
φ3=(x^2+x+1) 根はζ^4、ζ^8
φ4=(x^2+1) 根はζ^3=i ζ^9=-i
φ6=(x^2-x+1) 根はζ^2、ζ^10
φ12=(x^4-x^2+1) 根はζ、ζ^5、ζ^7、ζ^11
936: Mara Papiyas ◆y7fKJ8VsjM [] 2019/10/17(木) 19:10:37.89 ID:448PbhX4(11/12) AAS
>>901
http://repository.hyogo-u.ac.jp/dspace/bitstream/10132/1612/1/ZD30301003.pdf
PDF 可解な5次方程式について - 兵庫教育大学 大迎規宏 著 -修士論文 2003
馬鹿は上記の論文読んでないだろ
読めば、定理4.9(p72)で貴様の主張が否定されてると分かるぞ
937: Mara Papiyas ◆y7fKJ8VsjM [] 2019/10/17(木) 19:21:12.21 ID:448PbhX4(12/12) AAS
x^5+b=0のとき、判別式Dfは3125*b^4で、
3125は5^5だから、Δf=√Dfは、有理数になりようがない
つまり、x^5+b=0のガロア群はF20
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.043s