[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
126
(2): 132人目の素数さん [sage] 2019/09/13(金) 23:46:16.98 ID:QEVZazxA(18/18) AAS
{{{}}}は推移的でないから
{{}}∈{{{}}}だが、¬({{}}⊂{{{}}})である

ここまで簡単な例でニワトリの馬鹿主張を
木端微塵に打ち砕けるのは実にキモチがイイw
153
(3): 132人目の素数さん [sage] 2019/09/14(土) 16:01:13.98 ID:VYIPOabR(14/30) AAS
>>150-152
ニワトリ 破滅への道 ?

>> ニワトリの発言
> 他者の発言

1.現スレで、前スレ845の自爆発言を蒸し返されるw >>10-11
2.さらに、別の人に1)2)を再度否定されるww >>21
3.ニワトリ、2)については前スレ865で撤回したというも
  1)については言い張り続ける再自爆発言www >>30
>>うん、それね、おれ間違っているね(^^;
>>まず、上記2)は、正則性公理から反例 x not∈ x
>>(x ⊂ xであるにも関わらす)が出るから間違い
>>(それ以外にも、反例はあるな。後述)

>>では、上記1)は、どうだろうか?
>>公理的集合論
>>「x ∈ y の直観的な意味は,もちろん元x が集合y に属することであるが,
>> x も一つの集合だと考える.」
>> ”元x も一つの集合だと考える”とすると、x ∈ y → x ⊂ y だろうと
>> しかし、ZFC公理系から導けると思って、トライしたが、残念ながらできなかった(^^;
>>(そういう文典も探したが、見つけられなかった)
>> しかし、我々の通常接する素朴集合論に近い議論では、
>> ”x ∈ y → x ⊂ y ”を認めた方が良いという結論に至った

4.すかさずトンチンカン発言をつっこまれるw >>46
>>∈−順序が成立つ場合は、”x ∈ y → x ⊂ y ”成立
>「∈ がその上で整列順序になる集合」って順序数だろ
>いつどこで誰が「一般の集合が順序数になる」と証明したんだ?
168: 132人目の素数さん [sage] 2019/09/14(土) 22:42:06.98 ID:VYIPOabR(24/30) AAS
ニワトリ集合論w

{}∈{{{}}}

ギャハハハハハハwwwwwww
184: 132人目の素数さん [sage] 2019/09/15(日) 00:17:14.98 ID:g2F0dADR(3/20) AAS
今夜はニワトリの丸焼きでパーティだな

祭りだ!祭りだ!!祭りだ!!!祭りだ!!!!
https://www.youtube.com/watch?v=oO7Y8NsnkRg

273: 132人目の素数さん [sage] 2019/09/17(火) 20:38:43.98 ID:mfJeWOr2(5/9) AAS
         ____   
       / \  /\ キリッ
.     / (ー)  (ー)\      
    /   ⌒(__人__)⌒ \    <偶数全体も奇数全体も無限集合 
    |      |r┬-|    |      よって{偶数、奇数}は無限集合
     \     `ー'´   /      
    ノ            \
  /´               ヽ              
 |    l              \
 ヽ    -一''''''"〜〜``'ー--、   -一'''''''ー-、.    
  ヽ ____(⌒)(⌒)⌒) )  (⌒_(⌒)⌒)⌒))
  
          ____
        /_ノ  ヽ、_\             <.だっておwww
 ミ ミ ミ  o゚((●)) ((●))゚o      ミ ミ ミ   元が2つしかない有限集合だろがw
/⌒)⌒)⌒. ::::::⌒(__人__)⌒:::\   /⌒)⌒)⌒)   貴様は数も数えられないのか
| / / /      |r┬-|    | (⌒)/ / / //  
| :::::::::::(⌒)    | |  |   /  ゝ  :::::::::::/
|     ノ     | |  |   \  /  )  /  
ヽ    /      `ー'´      ヽ /    /     
 |    |   l||l 从人 l||l      l||l 从人 l||l   バ   
 ヽ    -一''''''"〜〜``'ー--、   -一'''''''ー-、 ン
  ヽ ____(⌒)(⌒)⌒) )  (⌒_(⌒)⌒)⌒)) バ
                             ン
298
(2): 132人目の素数さん [sage] 2019/09/18(水) 07:48:27.98 ID:wvXbGob9(8/19) AAS
>>297
無理無理、お前、全然分かってないもん
もう、モストフスキは忘れろ
お前、初歩から間違ってる白痴だからwwwwwww
394
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/21(土) 08:07:52.98 ID:RSxZzkRi(5/13) AAS
>>393 補足

モストフスキ崩壊補題の原論文PDFが下記にあるね
”1949,?theorem 3”らしい
https://en.wikipedia.org/wiki/Mostowski_collapse_lemma
Mostowski collapse lemma
(抜粋)
In mathematical logic, the Mostowski collapse lemma, also known as the Shepherdson?Mostowski collapse, is a theorem of set theory introduced by Andrzej Mostowski (1949,?theorem 3) and John Shepherdson (1953).

References
http://matwbn.icm.edu.pl/ksiazki/fm/fm36/fm36120.pdf
Mostowski, Andrzej (1949), "An undecidable arithmetical statement" (PDF), Fundamenta Mathematicae, Institute of Mathematics Polish Academy of Sciences, 36 (1): 143?164
420
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/22(日) 07:26:02.98 ID:dCfcIyTY(4/20) AAS
>>419 さらに追加
(>>371より引用開始)
Z/nZ = {{・・,-2n,-n,0,n,2n,・・}, {・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・}, ・ ・ ・ ,{・・,-n-1,-1,n-1,2n-1,3n-1,・・}}
 ↓全射(内側の{}を外すだけ)
Z   ={・・,-2n,-n,0,n,2n,・・ ,  ・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・ , ・ ・ ・ , ・・,-n-1,-1,n-1,2n-1,3n-1,・・}
(引用終り)

ここで、↓の上の集合で、外側の{}を外してみよう
{・・,-2n,-n,0,n,2n,・・}, {・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・}, ・ ・ ・ ,{・・,-n-1,-1,n-1,2n-1,3n-1,・・}
 ↓全射
{・・,-2n,-n,0,n,2n,・・ ,  ・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・ , ・ ・ ・ , ・・,-n-1,-1,n-1,2n-1,3n-1,・・}

要するに、
↓の上側は、Zの部分集合で、0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZたちになる
↓の下側は、Zそのもの
つまり、↓の上側は、Zの部分集合の集まりで、そこに属する元から、Zの元に対する自然な対応(写像)が存在する
そこで、外側の{}を復活させて、同値類の集合{0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZ}とすれば

{{・・,-2n,-n,0,n,2n,・・}, {・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・}, ・ ・ ・ ,{・・,-n-1,-1,n-1,2n-1,3n-1,・・}}
 ↓全射
{・・,-2n,-n,0,n,2n,・・ ,  ・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・ , ・ ・ ・ , ・・,-n-1,-1,n-1,2n-1,3n-1,・・}
要するに、Zの部分集合、0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZ達からのZに対する写像が、そのまま保存されていると考えればいいだけのことだ(^^

(参考)
http://math.shinshu-u.ac.jp/~hanaki/edu/intro/intro2013.pdf
代数学入門 花木 章秀 信州大 2013
(抜粋)
P29
3.2 整数の合同によって定義される環
ある l ∈ Z が存在して
a - b = nl となるとき a ≡ b (mod n) と書くことにする。
このときこの関係は同値関係である。その a を含む同値類は
a + nZ = {b ∈ Z | a ≡ b (mod n)} = {a + nl | l ∈ Z}
であった。異なる同値類全体の集合は
Z/nZ = {0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZ}である。
(引用終り)
524: 132人目の素数さん [sage] 2019/09/23(月) 20:30:13.98 ID:xrE7eXYo(1/15) AAS
復活!!!
昨日、リンク張ろうとしてNGワード規制食らいました

>>518
>2)さて、単射が存在する
>{・・・,-4,-2,0,2,4・・・}{・・・,-3,-1,1,3,・・・}
> ↓fe(単射)     ↓fo(単射)
>{・・・,-4,-2,0,2,4・・・、・・・,-3,-1,1,3,・・・}

これはまあ、いいとして

>4)逆射が存在する
>{・・・,-4,-2,0,2,4・・・、・・・,-3,-1,1,3,・・・}
> ↓fe^-1(単射)     ↓fo^-1(単射)
>{・・・,-4,-2,0,2,4・・・}{・・・,-3,-1,1,3,・・・}

これはヒドイw 
値域が2つに分かれてるw

写像が根本的にわかってないね
ま、集合が根本的に分かってないせいだねw

「1」は一遍、死んだほうがいいねw
747
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/09(水) 07:41:13.98 ID:2o5RsZjT(6/15) AAS
哀れな素人さんが、ガロアについて質問してきたときに、回答したのは、おらっちだよ(゜ロ゜;
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.052s