[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
126(2): 132人目の素数さん [sage] 2019/09/13(金) 23:46:16.98 ID:QEVZazxA(18/18) AAS
{{{}}}は推移的でないから
{{}}∈{{{}}}だが、¬({{}}⊂{{{}}})である
ここまで簡単な例でニワトリの馬鹿主張を
木端微塵に打ち砕けるのは実にキモチがイイw
153(3): 132人目の素数さん [sage] 2019/09/14(土) 16:01:13.98 ID:VYIPOabR(14/30) AAS
>>150-152
ニワトリ 破滅への道 ?
>> ニワトリの発言
> 他者の発言
1.現スレで、前スレ845の自爆発言を蒸し返されるw >>10-11
2.さらに、別の人に1)2)を再度否定されるww >>21
3.ニワトリ、2)については前スレ865で撤回したというも
1)については言い張り続ける再自爆発言www >>30
>>うん、それね、おれ間違っているね(^^;
>>まず、上記2)は、正則性公理から反例 x not∈ x
>>(x ⊂ xであるにも関わらす)が出るから間違い
>>(それ以外にも、反例はあるな。後述)
>>では、上記1)は、どうだろうか?
>>公理的集合論
>>「x ∈ y の直観的な意味は,もちろん元x が集合y に属することであるが,
>> x も一つの集合だと考える.」
>> ”元x も一つの集合だと考える”とすると、x ∈ y → x ⊂ y だろうと
>> しかし、ZFC公理系から導けると思って、トライしたが、残念ながらできなかった(^^;
>>(そういう文典も探したが、見つけられなかった)
>> しかし、我々の通常接する素朴集合論に近い議論では、
>> ”x ∈ y → x ⊂ y ”を認めた方が良いという結論に至った
4.すかさずトンチンカン発言をつっこまれるw >>46
>>∈−順序が成立つ場合は、”x ∈ y → x ⊂ y ”成立
>「∈ がその上で整列順序になる集合」って順序数だろ
>いつどこで誰が「一般の集合が順序数になる」と証明したんだ?
168: 132人目の素数さん [sage] 2019/09/14(土) 22:42:06.98 ID:VYIPOabR(24/30) AAS
ニワトリ集合論w
{}∈{{{}}}
ギャハハハハハハwwwwwww
184: 132人目の素数さん [sage] 2019/09/15(日) 00:17:14.98 ID:g2F0dADR(3/20) AAS
今夜はニワトリの丸焼きでパーティだな
祭りだ!祭りだ!!祭りだ!!!祭りだ!!!!
https://www.youtube.com/watch?v=oO7Y8NsnkRg
273: 132人目の素数さん [sage] 2019/09/17(火) 20:38:43.98 ID:mfJeWOr2(5/9) AAS
____
/ \ /\ キリッ
. / (ー) (ー)\
/ ⌒(__人__)⌒ \ <偶数全体も奇数全体も無限集合
| |r┬-| | よって{偶数、奇数}は無限集合
\ `ー'´ /
ノ \
/´ ヽ
| l \
ヽ -一''''''"〜〜``'ー--、 -一'''''''ー-、.
ヽ ____(⌒)(⌒)⌒) ) (⌒_(⌒)⌒)⌒))
____
/_ノ ヽ、_\ <.だっておwww
ミ ミ ミ o゚((●)) ((●))゚o ミ ミ ミ 元が2つしかない有限集合だろがw
/⌒)⌒)⌒. ::::::⌒(__人__)⌒:::\ /⌒)⌒)⌒) 貴様は数も数えられないのか
| / / / |r┬-| | (⌒)/ / / //
| :::::::::::(⌒) | | | / ゝ :::::::::::/
| ノ | | | \ / ) /
ヽ / `ー'´ ヽ / /
| | l||l 从人 l||l l||l 从人 l||l バ
ヽ -一''''''"〜〜``'ー--、 -一'''''''ー-、 ン
ヽ ____(⌒)(⌒)⌒) ) (⌒_(⌒)⌒)⌒)) バ
ン
298(2): 132人目の素数さん [sage] 2019/09/18(水) 07:48:27.98 ID:wvXbGob9(8/19) AAS
>>297
無理無理、お前、全然分かってないもん
もう、モストフスキは忘れろ
お前、初歩から間違ってる白痴だからwwwwwww
394(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/21(土) 08:07:52.98 ID:RSxZzkRi(5/13) AAS
>>393 補足
モストフスキ崩壊補題の原論文PDFが下記にあるね
”1949,?theorem 3”らしい
https://en.wikipedia.org/wiki/Mostowski_collapse_lemma
Mostowski collapse lemma
(抜粋)
In mathematical logic, the Mostowski collapse lemma, also known as the Shepherdson?Mostowski collapse, is a theorem of set theory introduced by Andrzej Mostowski (1949,?theorem 3) and John Shepherdson (1953).
References
http://matwbn.icm.edu.pl/ksiazki/fm/fm36/fm36120.pdf
Mostowski, Andrzej (1949), "An undecidable arithmetical statement" (PDF), Fundamenta Mathematicae, Institute of Mathematics Polish Academy of Sciences, 36 (1): 143?164
420(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/22(日) 07:26:02.98 ID:dCfcIyTY(4/20) AAS
>>419 さらに追加
(>>371より引用開始)
Z/nZ = {{・・,-2n,-n,0,n,2n,・・}, {・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・}, ・ ・ ・ ,{・・,-n-1,-1,n-1,2n-1,3n-1,・・}}
↓全射(内側の{}を外すだけ)
Z ={・・,-2n,-n,0,n,2n,・・ , ・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・ , ・ ・ ・ , ・・,-n-1,-1,n-1,2n-1,3n-1,・・}
(引用終り)
ここで、↓の上の集合で、外側の{}を外してみよう
{・・,-2n,-n,0,n,2n,・・}, {・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・}, ・ ・ ・ ,{・・,-n-1,-1,n-1,2n-1,3n-1,・・}
↓全射
{・・,-2n,-n,0,n,2n,・・ , ・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・ , ・ ・ ・ , ・・,-n-1,-1,n-1,2n-1,3n-1,・・}
要するに、
↓の上側は、Zの部分集合で、0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZたちになる
↓の下側は、Zそのもの
つまり、↓の上側は、Zの部分集合の集まりで、そこに属する元から、Zの元に対する自然な対応(写像)が存在する
そこで、外側の{}を復活させて、同値類の集合{0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZ}とすれば
{{・・,-2n,-n,0,n,2n,・・}, {・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・}, ・ ・ ・ ,{・・,-n-1,-1,n-1,2n-1,3n-1,・・}}
↓全射
{・・,-2n,-n,0,n,2n,・・ , ・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・ , ・ ・ ・ , ・・,-n-1,-1,n-1,2n-1,3n-1,・・}
要するに、Zの部分集合、0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZ達からのZに対する写像が、そのまま保存されていると考えればいいだけのことだ(^^
(参考)
http://math.shinshu-u.ac.jp/~hanaki/edu/intro/intro2013.pdf
代数学入門 花木 章秀 信州大 2013
(抜粋)
P29
3.2 整数の合同によって定義される環
ある l ∈ Z が存在して
a - b = nl となるとき a ≡ b (mod n) と書くことにする。
このときこの関係は同値関係である。その a を含む同値類は
a + nZ = {b ∈ Z | a ≡ b (mod n)} = {a + nl | l ∈ Z}
であった。異なる同値類全体の集合は
Z/nZ = {0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZ}である。
(引用終り)
524: 132人目の素数さん [sage] 2019/09/23(月) 20:30:13.98 ID:xrE7eXYo(1/15) AAS
復活!!!
昨日、リンク張ろうとしてNGワード規制食らいました
>>518
>2)さて、単射が存在する
>{・・・,-4,-2,0,2,4・・・}{・・・,-3,-1,1,3,・・・}
> ↓fe(単射) ↓fo(単射)
>{・・・,-4,-2,0,2,4・・・、・・・,-3,-1,1,3,・・・}
これはまあ、いいとして
>4)逆射が存在する
>{・・・,-4,-2,0,2,4・・・、・・・,-3,-1,1,3,・・・}
> ↓fe^-1(単射) ↓fo^-1(単射)
>{・・・,-4,-2,0,2,4・・・}{・・・,-3,-1,1,3,・・・}
これはヒドイw
値域が2つに分かれてるw
写像が根本的にわかってないね
ま、集合が根本的に分かってないせいだねw
「1」は一遍、死んだほうがいいねw
747(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/09(水) 07:41:13.98 ID:2o5RsZjT(6/15) AAS
哀れな素人さんが、ガロアについて質問してきたときに、回答したのは、おらっちだよ(゜ロ゜;
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.052s