[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
95(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/13(金) 11:24:41.66 ID:nJx1ApW/(4/7) AAS
>>94
つづき
7. ZFC
ここまで出てきた公理を列挙すると次のようになる。
8. クラス
ZFCでは内包公理は認められない。
しかし、ある概念(を定義した述語)P(x)があるならばそれに対応する集合{x|P(x)}について語るというのは数学でごく普通におこなわれることなので、集合論でもそのような言い方を使いたい。
そのために{x|P(x)}の形の式を集合とは呼ばずにクラスと呼ぶことにする。
クラスは集合論のファーストクラスオブジェクトではなく、構文上のマクロのようなものにすぎない。
集合論の基本的な述語は「=」と「∈」の二つ
クラス用の変数も導入できるのだけど、これも集合論の体系自体には含まれない一種の省略記法として扱われる。
9. 到達不能基数
置換公理によって「果てしなく続く段階」や濃度の非常に大きな集合の存在が出てくるのだけど、さらに「その先」を考えることもできる。
濃度(無限の大きさ)について考える。
(以下は、あんまり関係ないが(本当は正則性公理「sの要素の中で最も低い段階に現れるもの」の関連で調べた)、メモ貼る)
https://en.wikipedia.org/wiki/Upper_set
Upper set
(抜粋)
In mathematics, an upper set (also called an upward closed set or an upset) of a partially ordered set (X, ?) is a subset U of X such that if x is in U and x ? y, then y is in U.
The dual notion is a lower set (also called a downward closed set, down set, decreasing set, initial segment, or semi-ideal), which is a subset L of X such that that if x is in L and y ? x, then y is in L
(引用終り)
以上
145(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/14(土) 11:53:20.66 ID:QdZ5TU5n(10/19) AAS
>>140
>推移的でない集合{{{}}}は、V3で現れる
それおサルの集合論でしょ?w(^^;
Φ∈{}∈{{}}∈{{{}}}
だよね
だから、∈順序の推移律より、{}∈{{{}}が成立して、{{}}の要素{}が{{{}}の要素でもあるので、
「 {{}}⊂{{{}}}成立」!!w
よって、集合{{{}}}は推移的です
あなたの主張は、>>139 の 「再帰の反復blog 2012-06-16 反復的集合観と公理的集合論」の
「整礎原理」を否定しているよな!!w(^^;
それって、ヒトの集合論とは異なるなぁ〜w(^^;
(>>139より再録)
https://lemniscus.hatenablog.com/entry/20120616/1339838683#sec6-7
再帰の反復blog
2012-06-16
反復的集合観と公理的集合論
(抜粋)
整礎原理
自分自身を含んでいたり包含関係が循環することがないため、「∈」について順序関係が成立することになる。
つまり包含関係「∈」に基づく「より単純な集合」←→「より複雑な集合」という相対的な位置づけを与えることができる。しかも包含関係「∈」を内側にたどっていくと必ずどこかで終わるので、「より単純な集合」←→「より複雑な集合」のうち、「より単純な集合」の方向はどこかで終点に至る。
整礎原理の成り立つ集合世界では、もっとも単純な集合から始まってだんだん複雑な集合に向かっていくという整然とした秩序が存在する
(この秩序は集合の要素数の大小関係とは異なる。たとえば0∈N∈{N})。
もっとも単純な集合は、要素を何も含まない空集合Φである。空集合Φはもちろん存在してほしい。
またこの空集合を元にして、{Φ},{{Φ}},{{{Φ}}},{{{{Φ}}}},…とか{Φ,{Φ}},{Φ,{Φ},{{Φ}}},{Φ,{Φ},{{Φ}},{{{Φ}}}},…といった集合も存在していてほしい。
(引用終り)
260(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/16(月) 21:23:05.66 ID:Snw5PyNp(6/6) AAS
>>258
(引用開始)
ベン図にのみ
こだわっているから間違った結論に走るんだよね
別にベン図以外の他の方法を用いればよいだけのこと
https://ja.wikipedia.org/wiki/ハッセ図
> { x, y, z } の冪集合には包含による半順序があり、
> 次のようなハッセ図で表される
(引用終り)
そうそう
そういう議論は歓迎だよ
しかし、「ベン図にのみこだわっているから間違った結論に走る」
のは
コケコッコーのみならず、おサルもだな
”ベン図は所詮ベン図 包含関係は描けても 所属関係は描けない”(>>246)
とか
”「ベン図で描ける」素朴集合論では 2段以上の∈の連鎖は考えてない”(>>238)
とか
それって、苦し紛れの根拠レスの主張だよねw(^^;
454: 132人目の素数さん [sage] 2019/09/22(日) 10:23:08.66 ID:adVjb7k7(18/28) AAS
>>451
条件を満たさないのなら書かない
ID:jPNqfDPl に 土下座して教えてもらえ 乞食w
680(1): 132人目の素数さん [sage] 2019/09/29(日) 17:34:22.66 ID:s0bEnY0r(16/16) AAS
それじゃ、おっちゃんもう寝る。
893(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/16(水) 21:42:34.66 ID:OrOarbJT(9/12) AAS
>>887
そうあせるな
おれは楽しんでいるんだ
円分体ねー
深いねー
円分体の深みを再認識しているんだよ
あんたの質問の答え
もう答えは出ているでしょ(^^
>>873-875とか
分かってないね
908: Mara Papiyas ◆y7fKJ8VsjM [] 2019/10/17(木) 05:35:43.66 ID:448PbhX4(3/12) AAS
馬鹿はウマに食わせるほど数学書を買っても
ロクに読みもせず、読んだとしても
結果を覚えるだけで証明の論理を追わないから
いつまでたっても数学が理解できない
悪いことは云わない 数学は諦めろ
数学書はみな売っちまえ
貴様がやるべきことは断捨離だw
953: Mara Papiyas ◆y7fKJ8VsjM [] 2019/10/18(金) 06:48:34.66 ID:yJv1enDY(7/17) AAS
>>951
>良いじゃない(^^
おまえの態度が良くないなw
おまえ、ガロアの名前でマウンティングしたいだけだろw
しかもそれにものの見事に失敗してるwww
おまえ、ガロアだけじゃなく無限集合でもボケかましてるんだぞw
>ぼくちゃんとの議論は、それ(ガロア理論の解説)を読むためのきっかけに過ぎない
やめとけ
計算一つしないおまえは、いくら文章読んだって数学は理解できねぇよ
怠惰な奴は、数学に限らず、何も身につかない
おまえの人生、負けっぱなしだろ?
ここでの書き込み見てれば分かるw
ここですら負けてる奴が、実社会で勝てるわけないw
954: Mara Papiyas ◆y7fKJ8VsjM [] 2019/10/18(金) 06:54:43.66 ID:yJv1enDY(8/17) AAS
>例えば、>>836の大失敗など。
そう思うなら金輪際数学板には書き込まないほうがいいね
おまえの書き込み、大失敗の連続だから
成功した試しが一つもない
なぜか分かるか
貴様は文章を読みもしないし、読んでも文字列を暗記するだけで
中身を理解しようともしないし、計算なんか一つもしないからだ
そんな怠惰な根性で、数学が分かるわけがないだろう?
おまえ、いったい何がしたいの?
ただマウンティングしたいだけなの?
だったら、別の方法で別の板で暴れなよw
ここじゃおまえの「コピペマウンティング」戦略は通用しないよ
嫌というほど思い知っただろう?
自分のコピペで自分の発言が否定されるとか最低最悪の屈辱だぜw
おまえには恥ずかしいという感情はないの?
もしないなら、おまえは人間じゃないな ただの動物
970(2): 132人目の素数さん [sage] 2019/10/18(金) 08:21:26.66 ID:mJ2TyGNr(2/8) AAS
>>ガロア理論が、(現代数学の)原点みたいなものでね
>
>それ、数学知らん奴の妄想
まぁ、そのあたりは主観によりますね。
現代数学がかなりガロア理論的なものに偏っているのは間違いない。
でも、みんなが同じ方向を向く必要なんてない。
(研究のエネルギーとしてもムダ。)
主流がそっちに向かってるときこそ逆張りするという考えがあってもいいと思います。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.064s