[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
68(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/12(木) 08:17:27.61 ID:cMDg8k3q(4/6) AAS
>>64
>一般の集合 ⊃ 推移的集合 ⊃ 順序数
(>>66より)
「正則性公理は全ての集合が整礎的であることを要求していて、だからZFCでは全ての集合がVに属する。
しかし、正則性公理を除いたり否定するような別の公理系を考えることも可能である(例えばen:Aczel's anti-foundation axiom)。
このような非整礎集合の集合論は一般的に採用はされていないが、研究する余地はある。」
(フォン・ノイマン宇宙 ja.wikipediaより)
なので、普通(ZFC内で)はベン図で議論してよいってことだな(^^
(引用終り)
ってことね
おサルはえらいね
三歳児なのに
非整礎集合の集合論を考えていたのか
ZFCの外ね
おサルはえらいね〜w(^^;
362(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/20(金) 07:12:34.61 ID:ihE7M+Qz(2/9) AAS
>>350 補足
>Z/nZ→Z:圏論の忘却函手みたいなのを考えて、Z/nZの同値類の構造を忘れたらZに戻るってこと
>(Z/nZの要素の例えば、0 + nZ={・・,-2n,-n,0,n,2n,・・}の元2nからZ中の例えば2nに対応を付ければ良い)
一夜漬けで、圏論風に考えてみたのが下記
Z-加群の圏というのがあるんだ(^^;
で、Z-加群の圏で、mod n を考えて、かつ、集合Zを下記>>329 花木章秀 信州大にならって
Z/nZ = {0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZ}と類別し、これをZ-加群の圏の部分圏と考える
Z-加群の圏 函手→ Z/nZ (mod nと類別)
Z/nZ 函手→ Z-加群の圏 (mod nと類別を忘れる忘却函手)
かな(^^
(参考)
https://ja.wikipedia.org/wiki/%E5%9C%8F_(%E6%95%B0%E5%AD%A6)
圏 (数学)
(抜粋)
例
圏と記号 対象の類 射の類 合成 大きさ 備考
アーベル群の圏 Ab 全てのアーベル群 全ての群準同型 写像の合成 大きい 群の圏の充満部分圏、Z-加群の圏と同じもの
https://ja.wikipedia.org/wiki/%E7%92%B0%E4%B8%8A%E3%81%AE%E5%8A%A0%E7%BE%A4
環上の加群
(抜粋)
例
Z を有理整数環とすると、Z-加群の概念はアーベル群の概念に一致する。
すなわち、一意的な仕方で任意のアーベル群を Z 上の加群にすることができる。
これには、n > 0 に対して nx = x + x + ... + x(n-項の和)とし、0x = 0 および (-n)x = -(nx) とおけばよい。
このようにアーベル群を加群と見たものは必ずしも基底を持たない。
実際、ねじれ元を持つような群は基底を持たない(ただし、有限体をそれ自身の上の加群と見たときは基底を持つ)。
つづく
426: 132人目の素数さん [sage] 2019/09/22(日) 08:04:10.61 ID:adVjb7k7(2/28) AAS
>>418
剰余類の加法、乗法の定義が
”きちんと定義されている”(well-defined)
という証明に、剰余類の要素が出てくるというのは、
剰余類の加法、情報の定義から当たり前である
そのことが
「剰余類の要素は、剰余類の集合の要素でもある」
ことの根拠になる、と思うのは只の馬鹿w
500(1): 132人目の素数さん [] 2019/09/22(日) 21:40:31.61 ID:g+51A3D4(21/25) AAS
>>499
>確かに、Z/2Zは集合としての元は二つ
じゃあ
https://ja.wikipedia.org/wiki/%E6%9C%89%E9%99%90%E9%9B%86%E5%90%88
>集合が有限であるとはその濃度(元の個数)が自然数である場合にいう。
によれば有限集合じゃんw
おまえ往生際悪いぞ
616: 132人目の素数さん [] 2019/09/27(金) 23:25:37.61 ID:hOMsDXh9(5/5) AAS
約束も守れないサイコパス
669(1): 132人目の素数さん [] 2019/09/29(日) 15:39:22.61 ID:GqnEepIO(5/5) AAS
公理的集合論なんてレベルの話じゃない
∈の定義から直ちに出て来る話
781(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/11(金) 07:51:06.61 ID:aKfhohl9(1/6) AAS
>>778
ああ、これ、分り易いな(^^
いつも、コピペでお世話になっている再帰の反復さん
https://lemniscus(URLがNGなので、キーワードでググれ(^^ )
再帰の反復blog (はてなブログ)
2012-05-27
方程式からガロア理論
(抜粋)
方程式の解法の話からガロア理論にたどり着くまでの要点のようなもの。
ガロア以前
ガロアが論文を書くより以前にラグランジュ、ガウス、ルフィニ、アーベルらの研究により、次のような結果が得られていた。
2次3次4次の方程式について: 提案されてきた方程式の解法はどれも解の置換の性質と密接に関係している。(ラグランジュ)
5次以上の方程式について: 解の置換の性質を調べることにより、5次以上の方程式が一般的にはべき根で解けないことが証明される。(ルフィニ、アーベル)
円周等分方程式などについて: 解の置換の性質を調べることにより、5次以上でもいくつかのタイプの方程式がべき根で解けることが証明される。(ガウス、アーベル)
ここからさらに進んで、任意の方程式についての解の置換(=ガロア群)の性質を考察したのがガロアだった、という流れになる。
1.対称性(シンメトリー)
2,方程式の対称性: 2次方程式の場合
3.3次、4次方程式の場合
4.5次以上の方程式の非可解性(ルフィニ、アーベル)
5.円周等分方程式(ガウス)
6.間奏: アーベルの方程式論について
7.解の置換(ガロア群)
8.原始元の最小多項式と基本定理の証明
9.方程式の可解性
10.追記: 方程式の可解性の概要
つづく
799(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/14(月) 11:04:41.61 ID:w6tqRMw5(2/18) AAS
>>793 (>>797w(^^ )
キーワード: youtube 数学 講義 ガロア
で検索すると、下記 ガロア理論(慶応の講義) があるね
https://www.youtube.com/playlist?list=PLhfQ_BXdiRzNOhYtBcLDSEH034b25nM0T
ガロア理論(慶応の講義)
15 本の動画4,938 回視聴最終更新日: 2014/08/28
【ガロア理論・第1回】代数の基本概念の復習
132,428 回視聴?2013/10/01
慶應義塾大学理工学部・数理科学科3年生科目・代数学第2 Kenichi Bannai
以下
【ガロア理論・第2回】代数拡大と最小分解体
【ガロア理論・第3回】自己同型群とガロア拡大
【ガロア理論・第4回】ガロアの基本定理
【ガロア理論・第5回】作図可能性
【ガロア理論・第7回】方程式の解の公式
【ガロア理論・第8回】基本群と被覆空間
【ガロア理論】課題解説(2013.10.04出題分)
【ガロア理論】課題解説(2013.10.11出題分)
【ガロア理論】小テスト解説(2013.10.11)
【ガロア理論】課題解説(2013.11.08出題分)
【ガロア理論】課題解説(2013.09.27出題分)
【ガロア理論】小テスト解説(2013.10.18)
【ガロア理論】小テスト解説(2013.10.25)
【ガロア理論】小テスト解説(2013.11.15)
813: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/14(月) 16:16:28.61 ID:w6tqRMw5(11/18) AAS
よくわからんな、2ch(いま5ch)の規制はww(゜ロ゜;
957(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/18(金) 07:08:03.61 ID:Zm+yHrIo(4/9) AAS
>>952
>私は今まで一言も「ガロア理論が分かっている」とは言っていないw
うむ、謙虚でよろしいw(^^
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.050s