[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
62: 132人目の素数さん [sage] 2019/09/12(木) 06:40:23.25 ID:0bjYSisu(2/6) AAS
>>55
>一番内側がu、中間がx、一番外がy
>それをベン図で解釈すれば、
>u ⊂ x ⊂ y

だろ?ベン図で描けるのはあくまで
u ⊂ x ⊂ y
であって
u ∈ x ∈ y
じゃないだろ?

>ベン図の包含関係から
>u1,u2,・・・,un ∈xであり
>u1,u2,・・・,un ∈yである
>これ即ち、∈−順序の推移性そのものでしょ

いやw
u1,u2,・・・,unを点として
(あくまで点であって「1点の集合」ではないことに注意!)
x、yをベン図の○で書かれた場合
x⊂y
だというだけで、xは点じゃないから
x∈y
ではないわな

そもそも一般の集合では∈が推移的でないんだから意味ない
順序数というのは∈が推移的なだけでなく整列順序になってる
という特殊な集合なんだよ

ニワトリにはそのことが全然分かってないw
185: 132人目の素数さん [sage] 2019/09/15(日) 00:25:27.25 ID:g2F0dADR(4/20) AAS
ニワトリとヒトの差は、指原莉乃と中元すず香くらい違う
っていおうとおもったけど
今見たらさしこ結構歌上手いじゃんw
ってことでこの喩えは撤回ねw

指原莉乃
https://www.youtube.com/watch?v=jV0nPk-wR8Y

323: 132人目の素数さん [] 2019/09/18(水) 22:53:15.25 ID:DounDdrn(2/5) AAS
>>291
アホはどう見てもおまえ
早く近所の中学生に教わってこい
326: 132人目の素数さん [] 2019/09/18(水) 23:15:23.25 ID:DounDdrn(5/5) AAS
2chスレ:math
が証明になってると信じて疑わないアホに数学は到底無理
373: 132人目の素数さん [] 2019/09/20(金) 10:23:44.25 ID:Sovgh4Ov(1) AAS
>>367
哀れな素人さん、スレ主です。
レスありがとうございます
スマホからなので、とりあえず
お礼まで(^_^)
546: 132人目の素数さん [] 2019/09/23(月) 23:37:11.25 ID:/TaDIct0(6/7) AAS
【祝】除菌完了
914
(3): 132人目の素数さん [sage] 2019/10/17(木) 08:05:51.25 ID:rXxqe236(3/8) AAS
>>912
ご参考にされてるHPは混乱してるのか、間違ったことも混じって書いてありますね。
定理として書いてある
「ζ=exp(2πi/n)の最小多項式は{1,ζ,ζ^2,...,ζ^{n-1}}の全てを解として持ちます.」
は明確に誤り。最小多項式の次数はφ(n)次なので、φ(n)個しか根を持ちえません。
(最小多項式)≠x^n-1 です。
あと、ζ,ζ^2,...,ζ^{n-1}が基底をなすように書いてありますが、これも素数でないnに対しては誤り。
Q上のベクトル空間としての次元もφ(n)なので、基底の個数もφ(n)個です。
941
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/17(木) 22:08:16.25 ID:khSgay+Z(7/9) AAS
>>914 >>934-935

ID:rXxqe236さん、ID:448PbhX4さん、あなたたちが正しいわ
大変失礼しました。円分多項式(円周等分多項式)ですよね

草場公邦 「ガロワと方程式」P118 5.5 「円周等分多項式の既約性」
に、詳しい説明がありました

とすると、”1のn乗根 (Joh著) 物理のがきしっぽ”さん http://hooktail.sub.jp/algebra/1sNthRoot/
n=pのときのイメージのままで書いているのかも(^^;

(参考)
https://ja.wikipedia.org/wiki/%E5%86%86%E5%88%86%E5%A4%9A%E9%A0%85%E5%BC%8F
円分多項式

このように n 乗して初めて 1 となる複素数(1 の原始 n 乗根)全てを根に持ち、最高次数の項の係数が 1 である多項式が円分多項式 Φn(x) である。

https://ndu-rep.repo.nii.ac.jp/?action=repository_uri&item_id=517&file_id=22&file_no=1
円周等分多項式の有理数体上での既約性
著者桜岡 充
雑誌名日本歯科大学紀要. 一般教育系
巻28
ページ9-14
発行年1999-03-20

http://www.asakura.co.jp/books/isbn/978-4-254-11467-6/
ガロワと方程式
A5変/192ページ/1989年07月10日
ISBN978-4-254-11467-6 C3341
草場公邦 著

http://www.kurims.kyoto-u.ac.jp/~kenkyubu/bessatsu/open/B50/pdf/B50_015.pdf
ラグランジュとガウスの代数方程式論の比較的考察
高瀬正仁
九州大学 MI 研究所/日本オイラー研究所
(抜粋)
円周等分方程式の代数的可解性を全面的に保証するにはこれでは不十分であり,もっと精密な
相互関係を明らかにしなければならないが,ガウスはこれに成功し,『アリトメチカ研究』の第7
章において円周等分方程式の根は巡回的であることを明らかにした.代数的可解性は根の巡回性に
支えられているのである.
円周等分方程式の領域ではラグランジュの省察は正鵠を射ていたが,具体的に表れたものはなお
雛形に留まっていた.根の相互関係への着目という一点においてガウスに影響を及ぼしたのは間違
いないが,ガウスが発見した根の巡回性はラグランジュの到達した地点からあまりにも遠いところ
にあった.それでもラグランジュはガウスが遂行したことの意味合いを理解して,書簡を送ってガウスを称讃した.
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.061s