[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む63 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
762(5): 132人目の素数さん [sage] 2019/04/21(日) 00:33:22.89 ID:qAtOnHpw(2/24) AAS
反論はあるだろうが個人的には記事の後半が面白い
出題者が確率測度で実数列を選び、それを定数列として数当てゲームを始めれば、時枝戦略によって99/100で数当てが成功する
この連続した2組の(確率)試行を何度繰り返しても99/100で成功する
であるならば、2つの直積を考えても99/100が言えそうな気がしてくるが、それは非可測の壁に阻まれる
確率論は成功するともしないとも言わない
ところで、本来の定義とは異なり独立性が可算無限の変数に対して同時に記述されるなら、数当てを行う最後の箱は他とは完全に独立なはずであり、当たるとは思えない
しかし無限族の独立性は有限族で定義されるので、実際のところ当たらないとも言えない
これが時枝の言いたかったことだろうと思う
すなわち、直積空間を考える場合、非可測ゆえに当たるとも当たらないとも言えないことと、独立性の定義から当たるとも当たらないとも言えないことは、対応関係にあるのでは?ということ
773: 132人目の素数さん [] 2019/04/21(日) 07:19:34.92 ID:rPZy/5H6(2/36) AAS
>>762
>個人的には記事の後半が面白い
もし時枝記事が箱の中身を確率変数とした場合にも正しいならね
しかしそれは数学的に証明できない 非可測性の壁があるから
>>763
初期設定において「実数列を無作為に選んではいけない」とはいってない
ただ、漫然と「無作為に選ぶ」と書くと、あたかも確率変数であるかの如く
聞こえるから割愛すべきということ。
781(12): 132人目の素数さん [sage] 2019/04/21(日) 08:23:37.06 ID:qAtOnHpw(7/24) AAS
>>780
お前の頭の固さはよくわかったし、他の読者にもよく伝わったと思うw
> 「1回のセット」=「1回の試行」という意味なら、
> 残念ながらアウトですね
>
> まず実数を箱に入れるのはセット以前です
> 入れたら、もう試行毎に変えることはできません
俺は1, 2, 3の セット を敢えて 確率試行 とは言わなかった
言外の意味もお前には汲めないようだ
さて、ID:rPZy/5H6とスレ主以外のみなさんへ
特に(3)の繰り返しで時枝戦略が成功することを理解している方に>>779を考えてほしい
1)箱に入れる実数を確率的に選ぶ
2)選んだ実数を箱に入れる(以降数字はconstant)
3)時枝戦略を実行する
この1, 2, 3を1回のセットとして、100万回実行してみよ
数当ては何回成功するだろうか?
それは成功確率とは呼べないものだろうか?
この思考実験を行ったあとで、記事の後半を読んでみてほしい
そして>>762を読み直してほしい
時枝はなにかを誤解しているのだろうか?
俺はそうは思わない
817: 132人目の素数さん [sage] 2019/04/21(日) 09:56:56.06 ID:qAtOnHpw(24/24) AAS
さて、このやり取りにも飽きたので、>>781を引用して終わりにする
>>781
> さて、ID:rPZy/5H6とスレ主以外のみなさんへ
> 特に(3)の繰り返しで時枝戦略が成功することを理解している方に>>779を考えてほしい
>
> 1)箱に入れる実数を確率的に選ぶ
> 2)選んだ実数を箱に入れる(以降数字はconstant)
> 3)時枝戦略を実行する
>
> この1, 2, 3を1回のセットとして、100万回実行してみよ
> 数当ては何回成功するだろうか?
> それは成功確率とは呼べないものだろうか?
>
> この思考実験を行ったあとで、記事の後半を読んでみてほしい
> そして>>762を読み直してほしい
>
> 時枝はなにかを誤解しているのだろうか?
> 俺はそうは思わない
820(1): 132人目の素数さん [sage] 2019/04/21(日) 10:40:37.71 ID:OyfBb3BA(1) AAS
>>756
>ID:sCjdKkz2さん、どうも。スレ主です。
>キチガイ相手ありがとう。ご苦労さまです
>貴方のそれ良い解釈で、ありだと思うよ(^^
サンクス:)
この件について議論が進んだようで何より。
>>762
なるほど、時枝さんの見解はそういう事だったのね。
ところで、この問題、箱の中は実数でなくても良いよね。
有理数でも自然数でも有限集合{0,...,9}でも。
841(7): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/04/21(日) 21:55:35.96 ID:mF1nMenr(6/9) AAS
>>820
ID:OyfBb3BAさん、どうも。スレ主です。
>サンクス:)
>この件について議論が進んだようで何より。
そうだね
こちらこそありがとう
特に、下記大事だね
>>714
(引用開始)
自然数を4つ無作為に選んで、a1,a2,a3,a4とする。
N=max{a1,a2,a3,a4}とする。
さらに、自然数を一つ無作為に選び、a5とする。
a5がN以下である確率はいくらか?
(引用終り)
ここ大事だよね。要するに、可算無限の自然数集合Nから、n1,n2を選んだときに、どちらが大きいか?
n1を先に選べば、0〜n1は有限集合であり、n1超えの自然数の集合は可算無限だから、確率P(n1<n2)は1になるよね(^^
>>>762
>なるほど、時枝さんの見解はそういう事だったのね。
時枝さんの見解なるものは、無意味だと思うよ
そもそも、時枝さん自身がなにを考えていたのかも不明だし
書いていることも、怪しいことを書いているので、無価値だ
例えば
スレ47 2chスレ:math
(引用開始)
確率の中心的対象は,独立な確率変数の無限族
X1,X2,X3,…である.
無限を扱うには,
(1)無限を直接扱う,
(2)有限の極限として間接に扱う,
二つの方針が可能である.
確率変数の無限族は,任意の有限部分族が独立のとき,独立,と定義されるから,(2)の扱いだ.
しかし,素朴に,無限族を直接扱えないのか?
扱えるとすると私たちの戦略は頓挫してしまう.
(引用終り)
確率論の独立は、下記のように二つの確率の積 ”P(A ∩ B)=P(A)P(B)”で定義される
この流儀で無限個の事象を考えれば、無限個の確率の積 P(A)P(B)P(C)・・・ を考えることが自然だ
が、0<= P(A) <=1 つまり0以上1以下の無限個の積を考えることは無意味 ∵無限個の積は、普通は0になるから
従って、「任意の有限部分族が独立」として、任意の有限個の積に書き換えるのは当然のことだ
(参考)
https://ja.wikipedia.org/wiki/%E7%8B%AC%E7%AB%8B_(%E7%A2%BA%E7%8E%87%E8%AB%96)
独立 (確率論)
定義
事象の独立
ふたつの事象 A と B が独立であるとは
P(A ∩ B)=P(A)P(B)
が成り立つことである。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.047s