[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む63 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
191
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/04/05(金) 13:56:49.10 ID:VayTWyHw(9/15) AAS
>>184 追加

ind-object:インド象?w(^^
https://ncatlab.org/nlab/show/ind-object
nLab
ind-object Last revised on April 12, 2018
Contents
1. Idea
2. Definition
As diagrams
As filtered colimits of representable presheaves
3. Examples
4. Properties
The category of ind-objects
Recognition of Ind-objects
Functoriality
The case that C already admits filtered colimits
5. Applications
6. In higher category theory
In (∞,1)-categories
7. Related concepts
8. References
(抜粋)
1. Idea
An ind-object of a category C is a formal filtered colimit of objects of C. Here “formal” means that the colimit is taken in the category of presheaves of C (the free cocompletion of C). The category of ind-objects of C is written ind-C or Ind(C).
Here, “ind” is short for “inductive system”, as in the inductive systems used to define directed colimits, and as contrasted with “pro” in the dual notion of pro-object corresponding to “projective system”.

Their ind-categories contain then also the infinite versions of these objects as limits of sequences of inclusions of finite objects of ever increasing size.

Moreover, ind-categories allow one to handle “big things in terms of small things” also in another important sense: many large categories are actually (equivalent to) ind-categories of small categories.
This means that, while large, they are for all practical purposes controlled by a small category (see the description of the hom-set of Ind(C) in terms of that of C below). Such large categories equivalent to ind-categories are therefore called accessible categories.

8. References
Ind-categories were introduced in

http://sage.math.washington.edu/home/wstein/www/home/craigcitro/sga4/Grothendieck/SGA4/sga41.pdf
Alexander Grothendieck, Jean-Louis Verdier in SGA4 Exp. 1 pdf file

つづく
192
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/04/05(金) 13:59:00.32 ID:VayTWyHw(10/15) AAS
>>191

つづき

and the dual notion of pro-object in
http://archive.numdam.org/ARCHIVE/SB/SB_1958-1960__5_/SB_1958-1960__5__369_0/SB_1958-1960__5__369_0.pdf
A. Grothendieck, Techniques de descente et theoremes d’existence en geometrie algebrique, II: le theoreme d’existence en theorie formelle des modules, Seminaire Bourbaki 195, 1960, (pdf).

https://ncatlab.org/nlab/show/Categories+and+Sheaves
Masaki Kashiwara, Pierre Schapira, section 6 of Categories and Sheaves , Grundlehren der mathematischen Wissenschaften 332 (2006).
(引用終わり)
以上
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.042s