[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む63 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む63 http://rio2016.5ch.net/test/read.cgi/math/1553946643/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
191: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/04/05(金) 13:56:49.10 ID:VayTWyHw >>184 追加 ind-object:インド象?w(^^ https://ncatlab.org/nlab/show/ind-object nLab ind-object Last revised on April 12, 2018 Contents 1. Idea 2. Definition As diagrams As filtered colimits of representable presheaves 3. Examples 4. Properties The category of ind-objects Recognition of Ind-objects Functoriality The case that C already admits filtered colimits 5. Applications 6. In higher category theory In (∞,1)-categories 7. Related concepts 8. References (抜粋) 1. Idea An ind-object of a category C is a formal filtered colimit of objects of C. Here “formal” means that the colimit is taken in the category of presheaves of C (the free cocompletion of C). The category of ind-objects of C is written ind-C or Ind(C). Here, “ind” is short for “inductive system”, as in the inductive systems used to define directed colimits, and as contrasted with “pro” in the dual notion of pro-object corresponding to “projective system”. Their ind-categories contain then also the infinite versions of these objects as limits of sequences of inclusions of finite objects of ever increasing size. Moreover, ind-categories allow one to handle “big things in terms of small things” also in another important sense: many large categories are actually (equivalent to) ind-categories of small categories. This means that, while large, they are for all practical purposes controlled by a small category (see the description of the hom-set of Ind(C) in terms of that of C below). Such large categories equivalent to ind-categories are therefore called accessible categories. 8. References Ind-categories were introduced in http://sage.math.washington.edu/home/wstein/www/home/craigcitro/sga4/Grothendieck/SGA4/sga41.pdf Alexander Grothendieck, Jean-Louis Verdier in SGA4 Exp. 1 pdf file つづく http://rio2016.5ch.net/test/read.cgi/math/1553946643/191
192: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/04/05(金) 13:59:00.32 ID:VayTWyHw >>191 つづき and the dual notion of pro-object in http://archive.numdam.org/ARCHIVE/SB/SB_1958-1960__5_/SB_1958-1960__5__369_0/SB_1958-1960__5__369_0.pdf A. Grothendieck, Techniques de descente et theoremes d’existence en geometrie algebrique, II: le theoreme d’existence en theorie formelle des modules, Seminaire Bourbaki 195, 1960, (pdf). https://ncatlab.org/nlab/show/Categories+and+Sheaves Masaki Kashiwara, Pierre Schapira, section 6 of Categories and Sheaves , Grundlehren der mathematischen Wissenschaften 332 (2006). (引用終わり) 以上 http://rio2016.5ch.net/test/read.cgi/math/1553946643/192
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.038s