[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む63 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
429: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/04/11(木) 07:24:24.03 ID:SCIZmoFu(1/3) AAS
メモ
https://ja.wikipedia.org/wiki/%E5%B1%80%E6%89%80%E7%92%B0
局所環
抽象代数学における局所環(きょくしょかん、英: local ring[1])は、1938年にヴォルフガンク・クルルによって導入された概念で[2]、比較的簡単な構造を持つ環であり、代数多様体や可微分多様体上で定義される関数の、あるいは代数体を座や素点上の関数として見るときの「局所的な振る舞い」を記述すると考えられるものである。局所環およびその上の加群について研究する可換環論の一分野を局所環論と呼ぶ。
目次
1 定義
2 例
2.1 可換な例
2.2 非可換な例
3 諸事実と諸定義
3.1 可換の場合
3.2 一般の場合
例
可換な例
可換(および非可換な)体は {0} を唯一の極大イデアルとする局所環である。
局所環に「局所」の名を冠する理由は次のようなものである。まず、実数直線上で 0 を含むある開区間において定義される実数値連続函数を考え、函数の 0 付近という局所での挙動のみに注目して、0 を含むある開区間(これはいくらでも小さく取って構わない)で一致するような函数を全て同一視する。
この同一視というのは同値関係を成し、この同値類を 0 における実数値連続函数の芽(め、germ)または実数値連続函数芽(が)という。実数値連続函数の芽は通常の函数の値ごとの加法と乗法によって可換環をなす。
この連続函数芽全体の成す環が局所環であることを知るためには、函数芽の可逆性を定義する必要がある。函数芽 f が可逆であるとは f(0) が 0 でないこととする。これはつまり、f(0) が 0 でなければ、連続函数の性質から、0 を含む適当な開区間上で f が 0 にならず、したがってその区間上で g(x) = 1/f(x) という連続函数の芽を考えることができるという理由による。このとき fg は 1 に等しい。
この特徴づけで明らかなことは、非可逆な函数芽の和がやはり非可逆となるということであり、これによって函数芽の環が可換局所環であることを知ることができる。特にこの局所環の極大イデアルは f(0) = 0 を満たすような函数芽全体に一致する。
430(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/04/11(木) 07:27:17.60 ID:SCIZmoFu(2/3) AAS
>>428
>ゲーデルの加速定理は圏とも高階論理とも無関係
(>>184より)
https://ja.wikipedia.org/wiki/%E3%82%B2%E3%83%BC%E3%83%87%E3%83%AB%E3%81%AE%E5%8A%A0%E9%80%9F%E5%AE%9A%E7%90%86
ゲーデルの加速定理
ゲーデルの加速定理(ゲーデルのかそくていり、英: Godel's speedup theorem)は Godel (1936)で証明された。この定理によれば、弱い形式的体系では非常に長い形式的証明しか存在しないが、より強い形式的体系では極めて短い形式的証明が存在する、というような文が存在する。
クルト・ゲーデルはそのような性質を持つ文を具体的に構成した。それはn階算術の体系で証明可能な命題であってn+1階算術ではより短い証明を持つものが存在するというものである。
(引用終り)
ゲーデルの加速定理
↓
クルト・ゲーデルはそのような性質を持つ文を具体的に構成した。それはn階算術の体系で証明可能な命題であってn+1階算術ではより短い証明を持つものが存在するというものである。
↓
高階論理
↓
圏論
431: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/04/11(木) 07:33:52.17 ID:SCIZmoFu(3/3) AAS
>>425
どうも、ありがとう(^^
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.042s