[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む63 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
520
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/04/15(月) 07:27:18.78 ID:GY+CIXbC(1/18) AAS
>>508 追加

http://www4.math.sci.osaka-u.ac.jp/~ochiai/ss2009.html
第17回(2009年度)整数論サマースクール 「l進ガロア表現とガロア変形の整数論」
http://www4.math.sci.osaka-u.ac.jp/~ochiai/ss2009proceeding/ss2009proceeding.html
「l進ガロア表現とガロア変形の整数論」報告集原稿のページ

https://www.ms.u-tokyo.ac.jp/~mieda/
Website of Yoichi Mieda
https://www.ms.u-tokyo.ac.jp/~mieda/pdf/SummerSchool.pdf
エタールコホモロジーと?進表現
三枝 洋一(九州大学大学院数理学研究院)
(抜粋)
目 次
0 はじめに 2
1 エタールコホモロジー入門 4
1.1 楕円曲線の Tate 加群 . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 層係数コホモロジー再考 . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 エタールコホモロジーの定義 . . . . . . . . . . . . . . . . . . . . . . 9
1.4 エタールコホモロジーの諸性質 . . . . . . . . . . . . . . . . . . . . 21
2 エタールコホモロジーを用いた Galois 表現の構成 31
2.1 エタールコホモロジーとして得られる Galois 表現 . . . . . . . . . . 31
2.2 一般化:代数的対応付きの場合 . . . . . . . . . . . . . . . . . . . . 31
3 整モデルと Galois 表現の関係 35
3.1 Weil-Deligne 表現 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 隣接輪体関手 Rψ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 良い還元の場合 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 半安定還元の場合 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5 一般の還元の場合 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6 ウェイト・モノドロミー予想 . . . . . . . . . . . . . . . . . . . . . . 63

つづく
521
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/04/15(月) 07:28:44.91 ID:GY+CIXbC(2/18) AAS
>>520

つづき

0 はじめに
本稿は,第 17 回整数論サマースクール「? 進ガロア表現とガロア変形の整数論」
における講演「エタールコホモロジーと ? 進表現」の内容をまとめたものである.エ
タールコホモロジーとは,一般の体上の代数多様体に対して機能するコホモロジー
理論であり,もともと Grothendieck によって Weil 予想の解決を目的として発明さ
れたものである.その理論は,Grothendieck および彼の弟子たちによっていわゆ
る SGA (S´eminaire de G´eom´etrie Alg´ebrique du Bois-Marie) において徹底的に展
開された後,[Del2], [Del3] において元来の目標を達成するに至った(Grothendieck
の描いていた方針とは異なっていたようであるが).それとともに,Weil 予想から
Ramanujan 予想を導いた Deligne の仕事 [Del1] を一つの契機として,エタールコ
ホモロジーは整数論にとっても重要な位置を占め始めた.Deligne は,モジュラー
曲線上の普遍楕円曲線のファイバー積から作られる高次元代数多様体(久賀・佐藤
多様体)のエタールコホモロジーを用いて,(重さの大きい)楕円モジュラー形式
から 2 次元 ? 進表現を構成した.そして,代数多様体から作られる ? 進表現が Weil
予想より来る性質を満たすことから,楕円モジュラー形式の q 展開の係数の絶対値
の評価を導いたのである.(もちろん,Eichler や志村五郎氏らによる先駆的な研究
がこの仕事の土台となっていることは言うまでもない.)

つづく
522
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/04/15(月) 07:29:04.67 ID:GY+CIXbC(3/18) AAS
>>521

つづき

この Deligne の仕事は,大
域的 Langlands 予想における「Galois 表現の構成問題」の特別な場合に位置付ける
ことができる.(GLn の)大域的 Langlands 予想とは,代数体 F に対し,GLn(AF )
の保型表現(のうち特別なもの)と Gal(F /F) の n 次元 ? 進表現(のうち特別なも
の)の間に自然な一対一対応が存在するという予想であり,そのうち,保型表現 Π
から始めてそれに対応する ? 進 Galois 表現 ρ(Π) を構成する問題が「Galois 表現の
構成問題」である.この問題は今日でも完全に解決されてはいないが,できている
場合も比較的多く,それが Sato-Tate 予想の完全解決をはじめとする最近の整数論
の発展の基礎となっている.Galois 表現の構成についての詳細は吉田輝義氏の記事
を参照していただくことにして,ここでは,現在知られている Galois 表現の構成
のほとんど全てがエタールコホモロジーによるものだということを強調しておきた
い.保型表現の合同関係を用いる方法(例えば [DS])も有名であるが,これは別の
場合([DS] では重さが大きい場合)に対応する Galois 表現が既に構成されている
ことを用いるので,結局エタールコホモロジーが必要となる.近年では Galois 表
現の代数的取り扱いに関する研究の進歩が目覚ましく,ついそちらに目が行きがち
になるが,そのような理論とともにエタールコホモロジー論をはじめとする数論幾
何学が Galois 表現の研究を支えていることをこの記事を通じ改めて喚起できれば
と思っている.また,エタールコホモロジーの応用範囲は整数論や代数幾何にはと
どまらないことにも言及しておくべきであろう.例えば,有限 Chevalley 群の既約
表現の構成(Deligne-Lusztig 理論)や Kazhdan-Lusztig 予想など,表現論におい
ても重要な役割を担っていることは有名である.

つづく
523
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/04/15(月) 07:29:21.38 ID:GY+CIXbC(4/18) AAS
>>522

つづき

さて,本稿を執筆するにあたって,筆者は二つのことを目標とした.まず一つ目
は,エタールコホモロジーの理論そのものの概説である.エタールコホモロジーに
ついては SGA ([SGA4], [SGA5], [SGA7], [SGA4 12]) というこの上ない基本文献が
あるうえ,そのダイジェスト版としても [SGA4 12, Arcata] という極めて優れた文献
がある(エタールコホモロジーの理論の基礎が,証明付きでたった 70 ページ程度で
紹介されている!).そのため本稿の前半部では,エタールコホモロジーの導入部
分や各基本定理の間の相互関係などを強調することで,これらの文献へと円滑に入
門できることを目標とした.二つ目は,エタールコホモロジーを用いて如何にして
Galois 表現を構成するか,また,如何にして構成した Galois 表現を調べるかをで
きるだけ一般的な立場から紹介することである.Galois 表現の理論へのエタールコ
ホモロジーの応用が盛んになったのは SGA 以後であることもあり,エタールコホ
モロジーを用いて Galois 表現を調べる技術をまとめた文献はほとんどないようで
ある.そのため本稿の後半部では,このような内容についてなるべく詳しく解説す
ることにした.理解の助けになると思われる具体例や練習もいくつか入れてある.
後半部を読むにはある程度コホモロジー論に対する慣れが必要かもしれない.本稿
で初めてエタールコホモロジーに触れる読者の方は,3.3 節まで読めば十分だと思
われる.逆に,SGA の内容を把握している読者の方は,第 1 節は飛ばしても支障
はないはずである.
なお,コンパクト台コホモロジーや係数理論と 6 つの関手についてなど,本稿で
一切触れることができなかった重要な概念もいくつかある.これらについては適宜
文献を参照していただきたい.SGA, [Del3], [BBD] といった定番の他,[KW] もな
かなかよい本だと思う.
この記事が少しでも読者の方々のエタールコホモロジーに対する理解の助けとな
れば幸いである.
(引用終り)
以上
524
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/04/15(月) 07:52:42.16 ID:GY+CIXbC(5/18) AAS
>>523

追加 ”エタールの意味”
エタール位相
https://ja.wikipedia.org/wiki/%E3%82%B0%E3%83%AD%E3%82%BF%E3%83%B3%E3%83%87%E3%82%A3%E3%83%BC%E3%82%AF%E4%BD%8D%E7%9B%B8
グロタンディーク位相
(抜粋)
応用
開集合を被覆に置き換えることにより、層の理論が景上でまったく同様にして成り立つ。そのようにしてエタール景、ザリスキ景およびクリスタリン景上でエタール・コホモロジー、ザリスキ・コホモロジーおよびクリスタリン・コホモロジー(英語版)が得られる。
しかしながら異なるグロタンディーク位相が常に異なるコホモロジー理論を与えるわけではない (グロタンディークの篩)。このような欠点を補う概念としてグロタンディークによるトポスの理論がある。
(引用終り)

https://books.google.co.jp/books?id=eSoTAgAAQBAJ&pg=PA118&dq=21%E4%B8%96%E7%B4%80+%E7%B5%B6%E5%AF%BE%E6%95%B0%E5%AD%A6+%E3%82%A8%E3%82%BF%E3%83%BC%E3%83%AB&hl=ja&sa=X&ved=0ahUKEwjwvI3Q0tDhAhUKXrwKHdVGBDgQ6AEIKTAA#v=onepage&q=21%E4%B8%96%E7%B4%80%20%E7%B5%B6%E5%AF%BE%E6%95%B0%E5%AD%A6%20%E3%82%A8%E3%82%BF%E3%83%BC%E3%83%AB&f=false
21世紀の新しい数学〜絶対数学、リーマン予想、そしてこれからの数学〜
著者: 黒川信重、 小島寛之
株式会社 技術評論社
P118 エタールの意味 w(^^
P120-123 ホモロジーとコホモロジーの分り易い図 (ほんと分り易い。是非ご一覧を!!)
(引用終り)

つづく
525
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/04/15(月) 07:53:23.98 ID:GY+CIXbC(6/18) AAS
>>524

つづき

https://en.wikipedia.org/wiki/%C3%89tale_cohomology
Etale cohomology

History
Etale cohomology was suggested by Grothendieck (1960), using some suggestions by J.-P. Serre, and was motivated by the attempt to construct a Weil cohomology theory in order to prove the Weil conjectures. The foundations were soon after worked out by Grothendieck together with Michael Artin, and published as Artin (Artin 1962) and SGA 4.
Grothendieck used etale cohomology to prove some of the Weil conjectures (Dwork had already managed to prove the rationality part of the conjectures in 1960 using p-adic methods), and the remaining conjecture, the analogue of the Riemann hypothesis was proved by Pierre Deligne (1974) using ?-adic cohomology.

Further contact with classical theory was found in the shape of the Grothendieck version of the Brauer group; this was applied in short order to diophantine geometry, by Yuri Manin.
The burden and success of the general theory was certainly both to integrate all this information, and to prove general results such as Poincare duality and the Lefschetz fixed point theorem in this context.

つづく
526
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/04/15(月) 07:55:04.77 ID:GY+CIXbC(7/18) AAS
>>525

つづき

Grothendieck originally developed etale cohomology in an extremely general setting, working with concepts such as Grothendieck toposes and Grothendieck universes.
With hindsight, much of this machinery proved unnecessary for most practical applications of the etale theory, and Deligne (1977) gave a simplified exposition of etale cohomology theory. Grothendieck's use of these universes
(whose existence cannot be proved in ZFC) led to some uninformed speculation that etale cohomology and its applications (such as the proof of Fermat's last theorem) needed axioms beyond ZFC.
In practice etale cohomology is used mainly for constructible sheaves over schemes of finite type over the integers, and this needs no deep axioms of set theory: with a little care it can be constructed in this case without using any uncountable sets, and this can easily be done in ZFC (and even in much weaker theories).

Etale cohomology quickly found other applications, for example Deligne and Lusztig used it to construct representations of finite groups of Lie type; see Deligne?Lusztig theory.
(引用終り)
以上
527: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/04/15(月) 07:57:12.85 ID:GY+CIXbC(8/18) AAS
>>526 付記

(引用開始)
(whose existence cannot be proved in ZFC) led to some uninformed speculation that etale cohomology and its applications (such as the proof of Fermat's last theorem) needed axioms beyond ZFC.
In practice etale cohomology is used mainly for constructible sheaves over schemes of finite type over the integers, and this needs no deep axioms of set theory: with a little care it can be constructed in this case without using any uncountable sets, and this can easily be done in ZFC (and even in much weaker theories).
(引用終り)

ここ、けっこう面白いね(^^;
538
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/04/15(月) 20:39:10.50 ID:GY+CIXbC(9/18) AAS
>>500

藤原正彦:数学としては、過去完了形でしょw(^^
https://ja.wikipedia.org/wiki/%E8%97%A4%E5%8E%9F%E6%AD%A3%E5%BD%A6
藤原正彦

エッセイではしばしば「武士道」や「祖国愛(ナショナリズムではなくパトリオティズム)」、「情緒」の大切さを諧謔を交えて説いてきたが、口述を編集者がまとめた『国家の品格』(2005年11月、新潮新書)は200万部を超えるベストセラーとなり、翌2006年の新語・流行語大賞に「品格」が選ばれるなど大きな話題となった。
同書では数学者の立場から、「論理より情緒」・「英語より国語」・「民主主義より武士道」と説いている。

2009年に上映された映画「劔岳 点の記」は父・新田次郎の原作である。著作権を持っていた正彦と実兄の正広は木村大作監督の山岳映画に対するこだわりから二つ返事で了承したという[1]。

2009年(平成21年)3月をもってお茶の水女子大学教授を定年退職。講演活動を行いつつ数本の連載を抱える。『週刊新潮』に「管見妄語」を連載、2010年(平成22年)9月に『大いなる暗愚』(新潮社)として出版した。

人物
小学校からの英語教育必修化に批判的で「一に国語、二に国語、三四がなくて五に算数。あとは十以下」であると述べ、国語教育の充実を推奨。「読書をもっと強制的にでもさせなければならない」「教育の目的は自ら本に手を伸ばす子を育てること」と主張している。
教育学者の齋藤孝明治大学教授は『祖国とは国語』の解説で「ああ、この人(藤原)に文部科学大臣になってもらいたい」と記している。なお、この齋藤の言葉は『祖国とは国語』の帯の惹句にもなっている。

年表
1966年(昭和41年) - 東京大学理学部数学科卒業。
1968年(昭和43年)同大学院理学系研究科修士課程数学専攻修了。東京都立大学理学部助手。
1972年(昭和47年) - ミシガン大学研究員。
1973年(昭和48年)東大に学位請求論文を提出して理学博士号取得。博士論文:「不定方程式における局所大局原理及解の有限性」。コロラド大学ボルダー校助教授。
1976年(昭和51年) - お茶の水女子大学理学部数学科助教授。
1988年(昭和63年) - 同教授。
540
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/04/15(月) 20:52:00.39 ID:GY+CIXbC(10/18) AAS
>>499
これ?(^^

”主題歌
エンディングテーマ
「夢光年」[7][6]"
7^ “夢光年 / 影山ヒロノブ/こおろぎ'73”. JOYSOUND. 2016年1月10日閲覧。
https://www.joysound.com/web/search/song/10516
作詞 - 阿久悠 / 作曲 - 鈴木キサブロー / 編曲 - 和泉一弥 / 歌 - 影山ヒロノブ / コーラス - こおろぎ'73”

https://ja.wikipedia.org/wiki/%E5%AE%87%E5%AE%99%E8%88%B9%E3%82%B5%E3%82%B8%E3%82%BF%E3%83%AA%E3%82%A6%E3%82%B9
宇宙船サジタリウス
(抜粋)
『宇宙船サジタリウス』(うちゅうせんサジタリウス[1])は、1986年1月10日から1987年10月3日までテレビ朝日系列で、毎週金曜19:30 - 20:00[2](JST)に全77話が放送された、日本アニメーション制作の日本のオリジナルSFアニメである。

概要
零細企業で宇宙貨物輸送船のパイロットとして働く平庸な中年サラリーマン達が、様々な星で騒動に巻き込まれるストーリーを複数話完結のオムニバス形式で描いた作品。登場人物は全て獣人のようなキャラクターデザインである。

イタリアの物理学者、アンドレア・ロモリ(Andrea Romoli)が描いた「アルトゥリ・モンディ[4]」(ALTRI MONDI)というSF怪奇冒険漫画を原作としているが、原作から借りているのはメインキャラクターや一部の設定のモチーフだけであり、ほぼ日本アニメーションオリジナルの作品である。
同社の企画担当スタッフであった佐藤昭司が、イタリア旅行中に古本市で「アルトゥリ・モンディ」の原作本を見かけたことが、アニメ化のきっかけとなったという。1982年の段階でパイロットフィルムが完成しており、当時のアニメ雑誌にも新番組予定として紹介されていたが、実際に放送が始まるまでにはそれから4年近い歳月を必要とした。

『ドラえもん』の次の放送枠に当たる金曜19時台後半での放送にも関わらず、獣人的なキャラデザインとは裏腹な、平庸で倹しい生活臭に満ちた中年サラリーマンたちが、家族や生活などの様々なしがらみの中で時には命を張って冒険に赴くといった、低学年層にとっては難解なストーリーも展開された。
この他、絶滅危惧種に関する問題や環境問題、アメリカ・ソ連との冷戦、あるいはベルリンの壁など、当時の時節をパロディ化してテーマに織り込むという社会派アニメとしての一面もあった。

つづく
541: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/04/15(月) 20:52:56.27 ID:GY+CIXbC(11/18) AAS
>>540

つづき

放送開始当初はそれほど注目されておらず、2クール程度の予定でスタートしたが、後に最高視聴率が19%を超え、最終的に1年9ヶ月近くもの間放送されることになった。
当初は1987年10月以降も放送が続く予定で、タケカワユキヒデ作曲による新主題歌が使用される予定であったが、同年秋の改編にて『パオパオチャンネル』と『ニュースシャトル』の放送開始が決定したのに伴い放送枠が消滅した為、実現には至らなかった。

放送終了が決定した後になって、石原裕次郎死去の特番(1987年7月17日放送)で放送が1週飛んでしまったため、最終話(77話)は76話の翌日である10月3日(土曜日)19:30 - 20:00に放送された。
朝日放送では当時その時間帯はドラマ『部長刑事』の放送枠であり、差し替えができなかったことから止むを得ず全国で最も早く、当日の17:55 - 18:25に放送された(詳細は『部長刑事』の項目を参照)。また、当時はテレビ朝日系列と日本テレビ系列のクロスネット局だったテレビ信州も、当時土曜19時台にて日本テレビ系列の番組を同時ネットしていた関係で、最終話のみ遅れネットとなった。

第1・2話とそれ以降ではオープニングアニメーションの一部が異なる。
(引用終り)
545: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/04/15(月) 21:18:16.77 ID:GY+CIXbC(12/18) AAS
>>537
イヌコロさんw(^^
>>24-29ご参照w)
547
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/04/15(月) 21:27:32.48 ID:GY+CIXbC(13/18) AAS
>>542
>フーリエや線形代数の計算できるのだろうか?

Pythonさんがやってくれるんじゃない?(^^

https://www.amazon.co.jp/dp/4873117682
Pythonからはじめる数学入門 単行本(ソフトカバー) ? 2016/5/21
Amit Saha (著), 黒川 利明 (翻訳)

カスタマーレビュー
Amazon カスタマー
5つ星のうち4.0教育的
2016年7月30日
形式: 単行本(ソフトカバー)
もし、読者がpythonについて少しでも知っているなら1日で終えることができる程度の内容で、プログラミングを初めて学ぶ人であっても、1週間でおおよそ理解できる内容なので、誰でも気楽に取り組める。

特に「中学生(あるいは高校生)がプログラミングを学ぶ」というような目的なら、この本はとても良いものといえる。なぜなら、代数・幾何・確率/統計・解析などの基礎的な数学やちょっとした科学の例を、プログラミングを通じて学ぶことができるからである。そのため、プログラミングを学びたい人だけではなく、中学・高校程度の数学や科学について学びたい人にとっても面白い内容になっている。

全体的には、「プログラミング」「数学」「科学」をまんべんなく繋げて説明されている。しかし、この分野についてもっと本格的にやりたい人は、むしろIPythonデータサイエンスクックブック ―対話型コンピューティングと可視化のためのレシピ集のほうが満足できる。
548
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/04/15(月) 21:28:49.45 ID:GY+CIXbC(14/18) AAS
>>547 追加

https://www.amazon.co.jp/dp/4822295915/ref=pd_lpo_sbs_14_t_0?_encoding=UTF8&psc=1&refRID=MA3T34TDA1NGYGXHWQEH
文系プログラマーのためのPythonで学び直す高校数学 単行本 ? 2019/3/14
谷尻かおり(メディックエンジニアリング) (著)

商品の説明
内容紹介
数学とPythonがいっぺんに学べる一石二鳥の1冊!

プログラミングに数学の知識は役に立つと聞くけれど…。高校時代に数学に挫折した経験を持つ人も多いのでは?

第4章 ベクトル
ベクトルの演算、ベクトル方程式、内積、コサイン類似度、外積、ベクトルで面積を計算など
第5章 行列
行列の演算、逆行列と連立方程式、図形の一次変換(移動、回転、拡大縮小)、一次変換の組み合わせ、同次座標など
第8章 微分・積分
差分と微分、変化率、導関数、極値、定積分と不定積分、原始関数、積分定数、曲線の接線、輪郭の抽出、円周と円の面積、球の体積と表面積など

カスタマーレビュー
suehiro
VINEメンバー
5つ星のうち5.0題名の通りで,役立つ
2019年4月4日
形式: 単行本Amazonで購入
 まさに,『文系プログラマーのためのPythonで学び直す高校数学』の本です。8章構成で,第1章,第2章で,ビットから始まって,基数変換,浮動小数点とコンピュータに関係する数学の説明があります。
ここがまさに文系プログラマーがあやしいとろです。理系であれば常識です。第3章から第8章まで,高校数学の主な項目が Python の簡単なプログラムで実装しながら説明されています。行列は,高校でやっている人とやっていない人に別れますが,この本ではちゃんと説明があります。
 プログラマーの人であれば,十分読みこなせますが,プログラムの経験がないと,近くに指導してくる人がないと読むのが大変かと思います。ちょっとした指導があれば,中学生であれば,十分に読めます。学年で習う数学のレベルを超えて,どんどん数学が勉強できます。
549
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/04/15(月) 21:34:28.42 ID:GY+CIXbC(15/18) AAS
>>548
>行列は,高校でやっている人とやっていない人に別れますが,この本ではちゃんと説明があります。

余談だけど、中学で3元連立方程式は当たり前で
そのときに、中学教師が、3x3の行列と行列式でクラメールを教えてくれた
まあ、いまどきの中高一貫ならそれ以上やっていると思うけどね(^^;

いま、高校で行列無くなったん?(^^;
やれやれ
550
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/04/15(月) 21:43:32.84 ID:GY+CIXbC(16/18) AAS
>>546
ピエロちゃん、粘着、ご苦労さん(^^
がんばってなw

サイコパスは、ちょっとツツクと反応するから
面白いわ(^^;
553
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/04/15(月) 23:58:58.19 ID:GY+CIXbC(17/18) AAS
>>531
>・確率過程論を全く知らなかったww
>(時枝記事にある確率変数の族が、確率過程論の用語だと気づかないレベルじゃ、読んでも分からんだろうぜw(^^ )

補足しておく

材料物性の重要な項目で、拡散現象がある。そういう論文を読んでいると、確率過程論が使われているものがある
そうすると、自然に確率過程論に目を通す必要が出てくるんだ(^^

だから「ランダム・ウォーク (random walk) 」が、確率過程論の典型例だということは、これ おれらの常識なんだよね(^^
で、重川 「確率論基礎」(2013)PDFで、”確率過程論”というキーワードをヒントで出しても、
”第4 章ランダム・ウォーク・・・47”に目が行かないんだな、落ちこぼれサイコパスは w(^^;

(参考)
http://www.orsj.or.jp/~wiki/wiki/index.php/%E3%83%96%E3%83%A9%E3%82%A6%E3%83%B3%E9%81%8B%E5%8B%95
ブラウン運動
【ぶらうんうんどう (Brownian motion)】
(抜粋)
詳説
 ランダム・ウォーク (random walk) とその連続化であるブラウン運動は, でたらめな動きを表現する最も基本的な確率過程で, 幅広い応用がある.

式 (2) は拡散方程式 (diffusion equation) と呼ばれ, その解は初期条件v(0,0)=1, , v(x,0)=0 (xne0), のもとで, 正規分布 N(0,σ^2,t), の密度関数となる. より一般的には, 初期値が0の (必ずしも対称でない) 単純ランダム・ウォークにおいて, d^2/T=σ^2, , (p-q)/d=μ/σ^2, を保ったまま Tto0, とすると, 時刻t, での位置が正規分布N(μ,t,σ^2,t), に従う確率過程が得られる [1].

ブラウン運動 イギリスの植物学者ブラウン (R. Brown) は, 水面に浮く花粉中の微粒子が極めて不規則な動きをすることを見いだした. アインシュタイン (A. Einstein) は, この運動が拡散方程式 (2) によって特徴づけられることを示し, その後ウィナー (N. Wiener) らによって確率過程としての基盤が築かれた. この確率過程をブラウン運動 (Brownian motion) またはウィーナー過程 (Wiener process) と呼ぶ.

つづく
554
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/04/15(月) 23:59:31.88 ID:GY+CIXbC(18/18) AAS
>>553

つづき

拡散過程 ドリフト係数や拡散係数が位置x, や時刻t, に依存した値μ(x,t), , σ^2(x,t), をとるように一般化して得られる確率過程{D(t)}_{tge0}, を拡散過程 (diffusion process) と呼び, μ(x,t), と σ^2(x,t), を, それぞれドリフト関数, 拡散関数と呼ぶ. 拡散過程は強マルコフ性を持ち, その標本路は連続である. 逆に, 連続な標本路を持つマルコフ過程は拡散過程となることが知られている.

 ブラウン運動や拡散過程の標本路は, 連続であるがいたるところで微分不可能という性質を持っている. このため拡散過程の解析においては, 確率積分や確率微分方程式といった通常の微分や積分とは異なる概念が必要となる [3, 4].
(引用終り)

つづく
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.047s