[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む59 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
168
(5): 132人目の素数さん [sage] 2019/01/27(日) 07:22:31.48 ID:2muVTg0N(1) AAS
>>166
この問題は昔どこかの掲示板で、「学校の試験で
cos(x)∈Q(sin(x))を証明しろという問題を出されたけど
ルートが外せるわけないですよね?」
と訊いてたひとがいたことから、「おそらく元はこういう話だったんだろう」
と思って回答したことのある問題なんですよ。
勿論、cos(x)∈Q(sin(x))が一般的に言えるはずがないし
cox(x)=√(1-sin(x)^2) のルートが一般的に外れるわけがない。
それと、前々スレかでどなたかが貴方のことを
「特化した証明という概念がない」と評していたこと。
証明は「2πが周期であることとnが奇数であることが寄与する」
という意味で「特化した証明」になります。
このような証明は一般的に代数的・数論的になるものです。
なぜなら、解析的な証明というのはx一般に成り立つものであり
xの特殊性を反映しにくいからです。
169
(1): 132人目の素数さん [sage] 2019/01/27(日) 07:50:34.44 ID:yq5bMoT+(2/5) AAS
>>168
全く知らなかったが、掲示板で出されていたような問題だったのか。
>このような証明は一般的に代数的・数論的になるものです。
勿論、既に解決している同じ類の問題の証明は代数的な証明である。
ただ、有理数体Qに sin(2π/n)) を添加した体 Q(sin(2π/n)) とかは用いていない。
170: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/01/27(日) 08:02:54.56 ID:Jg2EKDlj(1/63) AAS
>>168
どもありがとう
なんか、それ>>42で期末試験とありましたね(^^
ガウスのDA 円分等周論の世界ですね
また、あとで
いま、ピエロちゃんと遊んでいるのでね
172: 132人目の素数さん [sage] 2019/01/27(日) 08:06:42.79 ID:yq5bMoT+(3/5) AAS
>>168
まあ、同じ類の問題といっていいのかというと微妙ではある。
もしかしたら、少し方向性が違うかも知れない。
175: 132人目の素数さん [sage] 2019/01/27(日) 08:26:15.01 ID:yq5bMoT+(4/5) AAS
>>171
全く、>>168は余計なことばかりいうわな。
代数構造についての証明だと、多くは代数的になるのは当たり前なんだが。
まあ、幾何的な手法で構造を調べる証明もあるけど。
381
(4): 132人目の素数さん [sage] 2019/01/28(月) 01:03:38.54 ID:I3RTouch(1/4) AAS
>>168で「特化した証明」と書きましたが、まったく任意の実数xも含めて考えてみたので書きますね。

当初考えていた証明→ sin のn倍角公式を使うもの
でしたが、オイラーの公式を使った方が簡単。
オイラーの公式: e^(ix)=cos(x)+i*sin(x).
そして、x:π/n の整数倍 とは限らず、x:任意の実数 でもある程度の分析は可能→命題参照
Qを有理数体、Rを実数体とする。
xをπの整数倍ではない任意の実数とする。K=Q(cos(x)), L=Q(e^(ix))=K(i*sin(x)) とおくと
L/K は2次拡大。また、L∩R=K という関係がある。
以上のことから次の命題が成立することが分かる。

命題 sin(x)∈K ⇔ i∈L.

最も簡単なケース(円分体)
e^(ix)の整数乗でi に等しいものがあるとき ⇔ Lが1のn乗根(nは4の倍数)の体のとき

i∈L だとしても、それが「e^(ix)の整数乗」という形で含まれるとは限らないので
sin(x)\not∈K の証明はより難しい。
sinとcos を入れ替えた場合→ x+π/2 として分析できる。

(以上、オイラーの公式と初歩的な代数しか使ってない。)
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.035s